Recent Advances in Peptide-Functionalized Hydrogels for Bone Tissue Engineering.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-04-14 Epub Date: 2025-04-03 DOI:10.1021/acsbiomaterials.4c02198
Guanrong Li, Yang Luo, Zeming Hu, Zheyuan Shi, Xu Cao, Rong Xu, Yunfeng Mi, Yudong Yao, Haijiao Mao, Hua Zhang, Yingchun Zhu
{"title":"Recent Advances in Peptide-Functionalized Hydrogels for Bone Tissue Engineering.","authors":"Guanrong Li, Yang Luo, Zeming Hu, Zheyuan Shi, Xu Cao, Rong Xu, Yunfeng Mi, Yudong Yao, Haijiao Mao, Hua Zhang, Yingchun Zhu","doi":"10.1021/acsbiomaterials.4c02198","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient therapeutic approaches for bone regeneration are urgently required to address the significant challenges associated with the repair of large-scale or long-segment bone defects. Peptide-functionalized hydrogels (PFHs) have emerged as important bioactive materials in bone tissue engineering because they produce biomimetic microenvironments enriched with multiple biochemical signals. This review summarizes the key fabrication techniques for PFHs and discusses their diverse applications in different fields. Furthermore, we systematically highlighted the biochemical functionalization of PFHs, which includes basic functions such as cell adhesion, cell recruitment, and osteoinduction; improved functions such as angiogenesis, biomineralization, immune regulation, and hormone regulation; and other functions, including antimicrobial and antitumor effects. Finally, critical biosafety considerations associated with PFHs and perspectives on developing intelligent PFHs are addressed. This review aims to inspire further research on PFHs and accelerate their applications in bone tissue engineering.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1970-1989"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02198","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient therapeutic approaches for bone regeneration are urgently required to address the significant challenges associated with the repair of large-scale or long-segment bone defects. Peptide-functionalized hydrogels (PFHs) have emerged as important bioactive materials in bone tissue engineering because they produce biomimetic microenvironments enriched with multiple biochemical signals. This review summarizes the key fabrication techniques for PFHs and discusses their diverse applications in different fields. Furthermore, we systematically highlighted the biochemical functionalization of PFHs, which includes basic functions such as cell adhesion, cell recruitment, and osteoinduction; improved functions such as angiogenesis, biomineralization, immune regulation, and hormone regulation; and other functions, including antimicrobial and antitumor effects. Finally, critical biosafety considerations associated with PFHs and perspectives on developing intelligent PFHs are addressed. This review aims to inspire further research on PFHs and accelerate their applications in bone tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨组织工程用肽功能化水凝胶研究进展。
迫切需要有效的骨再生治疗方法来解决与修复大面积或长段骨缺损相关的重大挑战。肽功能化水凝胶(PFHs)因其能产生富含多种生化信号的仿生微环境而成为骨组织工程中重要的生物活性材料。本文综述了PFHs的主要制备技术,并讨论了PFHs在不同领域的应用。此外,我们系统地强调了PFHs的生化功能,包括细胞粘附、细胞募集和骨诱导等基本功能;改善血管生成、生物矿化、免疫调节、激素调节等功能;和其他功能,包括抗菌和抗肿瘤作用。最后,讨论了与全氟烃相关的关键生物安全问题以及开发智能全氟烃的观点。本文旨在为PFHs在骨组织工程中的进一步研究提供参考,促进PFHs在骨组织工程中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Addition of Microscale Topographies to Silk Fibroin Film Modulates Corneal Endothelial Cell Behavior. Adaptations of Gram-Negative and Gram-Positive Probiotic Bacteria in Engineered Living Materials. Novel Mitochondria-Targeted NIR Cyanine Cy750M-C1 Nanoparticles for Chemotherapy against Triple-Negative Breast Cancer. SiRNA-Targeting TGF-β1 Based on Nanoparticle-Coated Ureteral Stents to Inhibit Ureteral Stricture. Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1