Optimizing the Shell Thickness of Ag@TiO2 Nanostructures by a Simple Top-Down Method to Engineer Effective SERS Substrates and Photocatalysts

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2025-04-13 DOI:10.1021/acsomega.4c1027610.1021/acsomega.4c10276
Mahabubur Rahman, Md Al-Amin, Amandeep Kaur, Shirin Akter Jahan, Andrew J. Wilson and Nur Uddin Ahamad*, 
{"title":"Optimizing the Shell Thickness of Ag@TiO2 Nanostructures by a Simple Top-Down Method to Engineer Effective SERS Substrates and Photocatalysts","authors":"Mahabubur Rahman,&nbsp;Md Al-Amin,&nbsp;Amandeep Kaur,&nbsp;Shirin Akter Jahan,&nbsp;Andrew J. Wilson and Nur Uddin Ahamad*,&nbsp;","doi":"10.1021/acsomega.4c1027610.1021/acsomega.4c10276","DOIUrl":null,"url":null,"abstract":"<p >In this article, we discuss a simple method to prepare core–shell Ag@TiO<sub>2</sub> nanoparticles (NPs) with an optimized shell thickness to engineer plasmonic photocatalysts and surface-enhanced Raman scattering (SERS) substrates. Variation in the shell (TiO<sub>2</sub>) thickness was analyzed by an acid-etching method, and the deterioration of the shell was traced by monitoring the extinction spectra of both colloidal and solid-supported Ag@TiO<sub>2</sub> NPs. Attainment of the optimum shell thickness was confirmed by noticing the simultaneous appearance of the LSPR absorption band (at 450 nm) of core silver nanostructures (<i>d</i> = ∼10 nm) and the scattering signature of the shell (TiO<sub>2</sub>) in the extinction spectrum of Ag@TiO<sub>2</sub> NPs. This study showed that the optimum thickness of TiO<sub>2</sub> is ∼2 nm, which allowed LSPR excitation by visible light. The observed blue shift of the LSPR peak, compared to the unetched Ag@TiO<sub>2</sub> NPs, with etching time indicated the size reduction of the NPs. Ag@TiO<sub>2</sub> with the optimum thickness exhibited a reaction rate five times faster than that of unetched Ag@TiO<sub>2</sub> under visible light irradiation. Ag@TiO<sub>2</sub> NPs exhibited higher photocatalytic activity under visible light irradiation than under UV light. Furthermore, Ag@TiO<sub>2</sub> NPs with the optimized thickness exhibited significantly higher SERS activity than the unetched Ag@TiO<sub>2</sub> NPs. The elevated photocatalytic and SERS activities exhibited by engineered Ag@TiO<sub>2</sub> NPs reveal the effectiveness of the etching process in creating a plasmonic effect in core(plasmonic)–shell (semiconductor) nanostructures.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"14940–14948 14940–14948"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10276","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c10276","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we discuss a simple method to prepare core–shell Ag@TiO2 nanoparticles (NPs) with an optimized shell thickness to engineer plasmonic photocatalysts and surface-enhanced Raman scattering (SERS) substrates. Variation in the shell (TiO2) thickness was analyzed by an acid-etching method, and the deterioration of the shell was traced by monitoring the extinction spectra of both colloidal and solid-supported Ag@TiO2 NPs. Attainment of the optimum shell thickness was confirmed by noticing the simultaneous appearance of the LSPR absorption band (at 450 nm) of core silver nanostructures (d = ∼10 nm) and the scattering signature of the shell (TiO2) in the extinction spectrum of Ag@TiO2 NPs. This study showed that the optimum thickness of TiO2 is ∼2 nm, which allowed LSPR excitation by visible light. The observed blue shift of the LSPR peak, compared to the unetched Ag@TiO2 NPs, with etching time indicated the size reduction of the NPs. Ag@TiO2 with the optimum thickness exhibited a reaction rate five times faster than that of unetched Ag@TiO2 under visible light irradiation. Ag@TiO2 NPs exhibited higher photocatalytic activity under visible light irradiation than under UV light. Furthermore, Ag@TiO2 NPs with the optimized thickness exhibited significantly higher SERS activity than the unetched Ag@TiO2 NPs. The elevated photocatalytic and SERS activities exhibited by engineered Ag@TiO2 NPs reveal the effectiveness of the etching process in creating a plasmonic effect in core(plasmonic)–shell (semiconductor) nanostructures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过一种简单的自上而下的方法优化Ag@TiO2纳米结构的壳厚度来设计有效的SERS底物和光催化剂
在本文中,我们讨论了一种简单的方法来制备具有优化壳厚度的核壳纳米粒子Ag@TiO2 (NPs),用于工程等离子体光催化剂和表面增强拉曼散射(SERS)衬底。通过酸蚀法分析了外壳(TiO2)厚度的变化,并通过监测胶体和固体负载Ag@TiO2 NPs的消光光谱来跟踪外壳的劣化。通过观察核心银纳米结构(d = ~ 10 nm)的LSPR吸收带(在450 nm处)的同时出现以及Ag@TiO2纳米粒子消光光谱中壳(TiO2)的散射特征,证实了最佳壳厚度的获得。本研究表明TiO2的最佳厚度为~ 2 nm,允许可见光激发LSPR。与未蚀刻Ag@TiO2纳米粒子相比,LSPR峰的蓝移随蚀刻时间的变化表明纳米粒子的尺寸减小。在可见光照射下,具有最佳厚度的Ag@TiO2的反应速度比未蚀刻的Ag@TiO2快5倍。Ag@TiO2 NPs在可见光下的光催化活性高于紫外光。此外,具有优化厚度的Ag@TiO2 NPs的SERS活性显著高于未蚀刻的Ag@TiO2 NPs。工程Ag@TiO2纳米粒子所表现出的光催化和SERS活性的提高表明,蚀刻工艺在核心(等离子体)-壳层(半导体)纳米结构中产生等离子体效应是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Issue Publication Information Issue Editorial Masthead Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1