{"title":"Multifunctional carbon dot-based dual-channel and dual-signal sensors for ribonucleotide discrimination and Fe3+ detection†","authors":"Runjie Miao, Yu Zhang, Haifeng Sha, Wenyan Ma, Yuefeng Huang and Hangrong Chen","doi":"10.1039/D5TB00324E","DOIUrl":null,"url":null,"abstract":"<p >Ribonucleotides and Fe<small><sup>3+</sup></small> are crucial for numerous biological processes, hence their effective discrimination and detection are imperative for the investigation of metabolic processes and the early diagnosis of diseases, yet current sensing strategies based on a single signal output are hard to fulfill the demands for practical detection accuracy. Herein, a dual-channel sensor based on copper-doped fluorescent carbon dots (Cu-CDs) as a single sensing unit has been developed for the precise discrimination of ribonucleotides. Combined with statistical analyses of the data arrays, accurate discrimination and quantification of the four most vital ribonucleotide triphosphates (ATP, CTP, UTP, and GTP) are achieved, providing a valuable reference to improve the design of complex sensor arrays. Furthermore, given the merits of dual-signal detection, a silica-based aggregation-induced emission material is further introduced as the second fluorophore. The constructed novel dual-fluorescence signal sensing system enables rapid quantitative detection (2 min) and visual semi-quantitative sensing of Fe<small><sup>3+</sup></small> with enhanced accuracy and a detection limit of 1.53 μM. Briefly, such dual-signal sensors based on Cu-CDs feature easy operation, simplicity, and accuracy, offering valuable references for the design and construction of dual-channel detection tools and hold potential for practical applications.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 22","pages":" 6444-6455"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00324e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Ribonucleotides and Fe3+ are crucial for numerous biological processes, hence their effective discrimination and detection are imperative for the investigation of metabolic processes and the early diagnosis of diseases, yet current sensing strategies based on a single signal output are hard to fulfill the demands for practical detection accuracy. Herein, a dual-channel sensor based on copper-doped fluorescent carbon dots (Cu-CDs) as a single sensing unit has been developed for the precise discrimination of ribonucleotides. Combined with statistical analyses of the data arrays, accurate discrimination and quantification of the four most vital ribonucleotide triphosphates (ATP, CTP, UTP, and GTP) are achieved, providing a valuable reference to improve the design of complex sensor arrays. Furthermore, given the merits of dual-signal detection, a silica-based aggregation-induced emission material is further introduced as the second fluorophore. The constructed novel dual-fluorescence signal sensing system enables rapid quantitative detection (2 min) and visual semi-quantitative sensing of Fe3+ with enhanced accuracy and a detection limit of 1.53 μM. Briefly, such dual-signal sensors based on Cu-CDs feature easy operation, simplicity, and accuracy, offering valuable references for the design and construction of dual-channel detection tools and hold potential for practical applications.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices