Potassium electrochemical optimization of MoS2 catalytic hydrogen evolution reaction performance

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemical Communications Pub Date : 2025-05-16 DOI:10.1039/d5cc01053e
SiZhuo Feng, Yan Tu, Qingfeng Zhang, Lingbin Xie, Shu-Juan Liu, Longlu Wang, Qiang Zhao
{"title":"Potassium electrochemical optimization of MoS2 catalytic hydrogen evolution reaction performance","authors":"SiZhuo Feng, Yan Tu, Qingfeng Zhang, Lingbin Xie, Shu-Juan Liu, Longlu Wang, Qiang Zhao","doi":"10.1039/d5cc01053e","DOIUrl":null,"url":null,"abstract":"Transition metal dichalcogenides, particularly molybdenum disulfide (MoS2), are gaining attention for their abundant resources, low cost, and high catalytic activity. However, challenges such as agglomeration, poor electrical conductivity, and low active site density limit their use in hydrogen evolution reactions (HER). This study presents a flexible self-supporting catalytic electrode, C@MoSx@pCNF, developed through potassium electrochemical intercalation. This method fragments the MoS2 nanosheets encapsulated in conductive carbon into smaller lamellas, transforming them into an amorphous structure. Compared to crystalline MoS2, the amorphous MoSx exhibits increased active sites and enhanced superhydrophilic and superhydrophobic properties. Under acidic conditions, the C@MoSx@pCNF electrode shows a low overpotential of 51 mV at a current density of 10 mA cm-2 with a Tafel slope of 77 mV dec-1, highlighting its exceptional HER performance and providing a new approach to enhance the catalytic efficiency of MoS2.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"30 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc01053e","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal dichalcogenides, particularly molybdenum disulfide (MoS2), are gaining attention for their abundant resources, low cost, and high catalytic activity. However, challenges such as agglomeration, poor electrical conductivity, and low active site density limit their use in hydrogen evolution reactions (HER). This study presents a flexible self-supporting catalytic electrode, C@MoSx@pCNF, developed through potassium electrochemical intercalation. This method fragments the MoS2 nanosheets encapsulated in conductive carbon into smaller lamellas, transforming them into an amorphous structure. Compared to crystalline MoS2, the amorphous MoSx exhibits increased active sites and enhanced superhydrophilic and superhydrophobic properties. Under acidic conditions, the C@MoSx@pCNF electrode shows a low overpotential of 51 mV at a current density of 10 mA cm-2 with a Tafel slope of 77 mV dec-1, highlighting its exceptional HER performance and providing a new approach to enhance the catalytic efficiency of MoS2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二硫化钼催化析氢反应性能的钾电化学优化
过渡金属二硫化物,特别是二硫化钼(MoS2)因其资源丰富、成本低、催化活性高等特点而日益受到人们的关注。然而,诸如团聚、导电性差和低活性位点密度等挑战限制了它们在析氢反应(HER)中的应用。本研究提出了一种柔性自支撑催化电极C@MoSx@pCNF,该电极是通过钾电化学插层制备的。这种方法将包裹在导电碳中的二硫化钼纳米片分解成更小的片层,将其转化为非晶结构。与结晶MoS2相比,无定形MoSx表现出活性位点增加,超亲水性和超疏水性增强。在酸性条件下,C@MoSx@pCNF电极在电流密度为10 mA cm-2、Tafel斜率为77 mV dec1时的过电位为51 mV,突出了其优异的HER性能,为提高MoS2的催化效率提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
期刊最新文献
Self-sorting multi-scale materials by self-assembling multi-component nanostructured gels in nonwoven fabrics. A Si3N4-modified cellulose/glass fiber hybrid separator inhibiting zinc dendrites and cathode dissolution for aqueous zinc-ion batteries. Aqueous-organic hybrid electrolyte stabilizing zinc metal anodes. Full recovery of lithium salts and transition metal oxides from spent ternary cathode lithium-ion batteries. Triptycene-fused multi-resonance TADF material endows high-efficiency electroluminescence and low efficiency roll-off
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1