Design of CO2-philic molecular units with large language models†

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemical Communications Pub Date : 2025-06-06 DOI:10.1039/D5CC02652K
Konstantinos D. Vogiatzis
{"title":"Design of CO2-philic molecular units with large language models†","authors":"Konstantinos D. Vogiatzis","doi":"10.1039/D5CC02652K","DOIUrl":null,"url":null,"abstract":"<p >The integration of large language models (LLMs) into chemical sciences presents a transformative approach for molecular design. In this study, we explore the capabilities of LLMs for generating novel molecular structures with enhanced CO<small><sub>2</sub></small> affinity for the development of novel physisorption-based carbon capture technologies. By integrating LLM-generated candidates with DFT-based evaluation, we identified promising physisorption agents and highlighted the synergy between AI and expert-guided chemical research. Notably, LLM-generated structures showcased emergent design strategies, such as cooperative binding motifs, that aligned with domain knowledge and experimental precedent.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" 55","pages":" 10166-10169"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc02652k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of large language models (LLMs) into chemical sciences presents a transformative approach for molecular design. In this study, we explore the capabilities of LLMs for generating novel molecular structures with enhanced CO2 affinity for the development of novel physisorption-based carbon capture technologies. By integrating LLM-generated candidates with DFT-based evaluation, we identified promising physisorption agents and highlighted the synergy between AI and expert-guided chemical research. Notably, LLM-generated structures showcased emergent design strategies, such as cooperative binding motifs, that aligned with domain knowledge and experimental precedent.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大语言模型的亲二氧化碳分子单元设计
将大型语言模型(LLMs)整合到化学科学中,为分子设计提供了一种变革性的方法。在本研究中,我们探索了llm生成具有增强CO2亲和力的新型分子结构的能力,以开发新的基于物理吸附的碳捕获技术。通过将法学硕士生成的候选材料与基于dft的评估相结合,我们确定了有前途的物理吸附剂,并强调了人工智能与专家指导的化学研究之间的协同作用。值得注意的是,法学硕士生成的结构展示了紧急设计策略,例如与领域知识和实验先例相一致的合作绑定基序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
期刊最新文献
Dearomatization [4 + 2] cycloaddition for constructing bridged polycyclic lactams Near-Instantaneous Chemoselective Transfer Hydrogenation of Aldehydes with Visual Endpoint Reporting and Ultrahigh TOF A lysosomal fluorescent probe for imaging of viscosity in tumoral ferroptosis and rheumatoid arthritis mice models Synthesis and transport properties of [Ni3Sn][Ni4−xS2], an n-type metal-rich sulfide with an intergrowth structure Amino-benzo-cinnolines “ABCDyes” as versatile cinnoline-based green emitting fluorophores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1