首页 > 最新文献

ACS Chemical Neuroscience最新文献

英文 中文
Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity. 发现第一类具有良好神经营养活性的 TSPO/碳酸酐酶双重调节剂
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-15 DOI: 10.1021/acschemneuro.4c00477
Valeria Poggetti, Elisa Angeloni, Lorenzo Germelli, Benito Natale, Muhammad Waqas, Giuliana Sarno, Andrea Angeli, Simona Daniele, Silvia Salerno, Elisabetta Barresi, Sandro Cosconati, Sabrina Castellano, Eleonora Da Pozzo, Barbara Costa, Claudiu T Supuran, Federico Da Settimo, Sabrina Taliani

In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative 3 as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.

在寻找治疗神经退行性疾病的潜在新疗法时,线粒体 18 kDa 转运蛋白(TSPO)和脑碳酸酐酶(CA)同工酶被视为潜在靶点。根据我们近年来开发的一类高亲和性和选择性 TSPO 配体和一类 CA 激活剂的结构,我们开发了一个小型的 2-苯基吲哚基 TSPO/CA 双调制剂库,它能够在低微摩尔/亚微摩尔范围内结合 TSPO 并激活 CA VII。计算研究证实了与这两个靶点的相互作用。通过对人类小胶质细胞 C20 进行生物学研究,发现衍生物 3 是一种很有前景的先导化合物,值得在未来进行优化,因为它(i)没有细胞毒性,(ii)能够刺激 TSPO 的类固醇生成功能并激活 CA VII,(iii)能够有效上调脑源性神经营养因子的基因表达。
{"title":"Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity.","authors":"Valeria Poggetti, Elisa Angeloni, Lorenzo Germelli, Benito Natale, Muhammad Waqas, Giuliana Sarno, Andrea Angeli, Simona Daniele, Silvia Salerno, Elisabetta Barresi, Sandro Cosconati, Sabrina Castellano, Eleonora Da Pozzo, Barbara Costa, Claudiu T Supuran, Federico Da Settimo, Sabrina Taliani","doi":"10.1021/acschemneuro.4c00477","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00477","url":null,"abstract":"<p><p>In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative <b>3</b> as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rimota-Gd: Paramagnetic Probe for In Vivo MRI Studies of the Cannabinoid 1 Receptor Distribution in the Mouse Brain
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-14 DOI: 10.1021/acschemneuro.4c0025910.1021/acschemneuro.4c00259
Qi Ouyang, Fei Zhao, Jingjing Ye, Mengyang Xu, Suyun Pu, Wenxue Hui, Xinyan Gao, Xiaochuan Zha, Hao Chen, Zhiming Wang, Fei Li, Zonghua Luo*, Kurt Wüthrich and Garth J. Thompson*, 

The cannabinoid 1 receptor (CB1) is highly expressed in the central nervous system, where its physiological functions include the regulation of energy balance, pain, and addiction. Herein, we develop and validate a technique to use magnetic resonance imaging (MRI) to investigate the distribution of CB1 across mouse brains with high spatial resolution, expanding previously described in vitro studies and in vivo studies with positron emission tomography (PET). To support the MRI investigations, we developed a ligand that is specific for in vivo neuroimaging of CB1. By chemically conjugating the CB1 antagonist rimonabant acid to a gadolinium chelator, we obtained the paramagnetic probe Rimota-Gd. The specificity of binding of rimonabant acid to CB1 and the relaxation enhancement by the paramagnetic gadolinium permit MRI-based localization of CB1. We used Rimota-Gd to investigate the spatial distribution of CB1 across the mouse brain and compared the results with an investigation using the PET radioligand [18F]MK-9470. Rimota-Gd opens the door for in vivo MRI imaging of CB1 and provides a roadmap for the study of other receptors by whole-brain images with high spatial and temporal resolution.

{"title":"Rimota-Gd: Paramagnetic Probe for In Vivo MRI Studies of the Cannabinoid 1 Receptor Distribution in the Mouse Brain","authors":"Qi Ouyang,&nbsp;Fei Zhao,&nbsp;Jingjing Ye,&nbsp;Mengyang Xu,&nbsp;Suyun Pu,&nbsp;Wenxue Hui,&nbsp;Xinyan Gao,&nbsp;Xiaochuan Zha,&nbsp;Hao Chen,&nbsp;Zhiming Wang,&nbsp;Fei Li,&nbsp;Zonghua Luo*,&nbsp;Kurt Wüthrich and Garth J. Thompson*,&nbsp;","doi":"10.1021/acschemneuro.4c0025910.1021/acschemneuro.4c00259","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00259https://doi.org/10.1021/acschemneuro.4c00259","url":null,"abstract":"<p >The cannabinoid 1 receptor (CB1) is highly expressed in the central nervous system, where its physiological functions include the regulation of energy balance, pain, and addiction. Herein, we develop and validate a technique to use magnetic resonance imaging (MRI) to investigate the distribution of CB1 across mouse brains with high spatial resolution, expanding previously described in vitro studies and in vivo studies with positron emission tomography (PET). To support the MRI investigations, we developed a ligand that is specific for in vivo neuroimaging of CB1. By chemically conjugating the CB1 antagonist rimonabant acid to a gadolinium chelator, we obtained the paramagnetic probe Rimota-Gd. The specificity of binding of rimonabant acid to CB1 and the relaxation enhancement by the paramagnetic gadolinium permit MRI-based localization of CB1. We used Rimota-Gd to investigate the spatial distribution of CB1 across the mouse brain and compared the results with an investigation using the PET radioligand [<sup>18</sup>F]MK-9470. Rimota-Gd opens the door for in vivo MRI imaging of CB1 and provides a roadmap for the study of other receptors by whole-brain images with high spatial and temporal resolution.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 23","pages":"4258–4266 4258–4266"},"PeriodicalIF":4.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-14 DOI: 10.1021/acschemneuro.4c0033810.1021/acschemneuro.4c00338
Yogita Dhurandhar, Shubham Tomar, Ashmita Das, As Pee Singh, Jeevan Lal Prajapati, Surendra H. Bodakhe and Kamta P. Namdeo*, 

Sophora flavescens, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson’s, Alzheimer’s and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine’s neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.

{"title":"Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders","authors":"Yogita Dhurandhar,&nbsp;Shubham Tomar,&nbsp;Ashmita Das,&nbsp;As Pee Singh,&nbsp;Jeevan Lal Prajapati,&nbsp;Surendra H. Bodakhe and Kamta P. Namdeo*,&nbsp;","doi":"10.1021/acschemneuro.4c0033810.1021/acschemneuro.4c00338","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00338https://doi.org/10.1021/acschemneuro.4c00338","url":null,"abstract":"<p ><i>Sophora flavescens</i>, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson’s, Alzheimer’s and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine’s neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 23","pages":"4245–4257 4245–4257"},"PeriodicalIF":4.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning. 超灵敏检测基于血液的阿尔茨海默病生物标记物:通过机器学习增强的综合 SERS 免疫测定平台。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-13 DOI: 10.1021/acschemneuro.4c00369
A N Resmi, Shaiju S Nazeer, M E Dhushyandhun, Willi Paul, Binu P Chacko, Ramshekhar N Menon, Ramapurath S Jayasree

Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer's disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ40, Aβ42, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.

准确的早期疾病检测对于改善患者护理至关重要,但传统的诊断方法往往无法在疾病的早期阶段发现疾病,从而导致治疗结果的延误。利用血液衍生物作为生物标记物的来源进行早期诊断,对于阿尔茨海默病(AD)的治疗尤为重要。本研究介绍了一种新方法,利用表面增强拉曼光谱(SERS)结合机器学习算法,精确、超灵敏地检测多种阿尔茨海默病核心生物标记物(Aβ40、Aβ42、p-tau 和 t-tau)。我们的方法采用了抗体固定的铝 SERS 基底,具有高精度、灵敏度和准确性。该平台在阿托摩尔(aM)浓度范围内达到了令人印象深刻的检测限,并跨越了从 aM 到微摩尔(μM)浓度的宽动态范围。这种超灵敏、特异的 SERS 免疫测定平台有望从血浆中识别轻度认知障碍(MCI)--AD 的潜在前兆。应用于光谱数据的机器学习算法提高了 MCI 与注意力缺失症和健康对照组的区分度,具有极高的灵敏度和特异性。我们的 SERS-机器学习综合方法具有可解释性,推动了注意力缺失症的研究,并强调了一种成本效益高、易于制备的 Al-SERS 底物在临床注意力缺失症检测中的有效性。
{"title":"Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning.","authors":"A N Resmi, Shaiju S Nazeer, M E Dhushyandhun, Willi Paul, Binu P Chacko, Ramshekhar N Menon, Ramapurath S Jayasree","doi":"10.1021/acschemneuro.4c00369","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00369","url":null,"abstract":"<p><p>Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer's disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ<sub>40</sub>, Aβ<sub>42</sub>, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and In Vitro and In Vivo Characterization of KAC-50.1 as a Potential α-Synuclein PET Radioligand KAC-50.1 作为一种潜在的 α-Synuclein PET 放射配体的鉴定、体外和体内特性分析
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 DOI: 10.1021/acschemneuro.4c0049310.1021/acschemneuro.4c00493
Dinahlee Saturnino Guarino*, Patricia Miranda Azpiazu, Dan Sunnemark, Charles S. Elmore, Jonas Bergare, Markus Artelsmair, Gunnar Nordvall, Anton Forsberg Morén, Zhisheng Jia, Miguel Cortes-Gonzalez, Robert H. Mach, Kyle C. Wilcox, Sjoerd Finnema, Magnus Schou and Andrea Varrone*, 

The accumulation of aggregated α-synuclein (α-syn) is a pathological hallmark of Parkinson’s disease (PD) and other synucleinopathies. Here within, we report the in vitro characterization targeting site 2 of α-syn fibrils and in vivo evaluation of NHPs of KAC-50.1 as a potential α-syn positron emission tomography (PET) radioligand. Preclinical studies were performed using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. These experiments were followed by PET imaging in cynomolgus monkeys using [11C]KAC-50.1. [3H]KAC-50.1 displayed a KD of 35 nM toward site 2 in recombinant α-syn fibrils. Specific binding of [3H]KAC-50.1 was observed in brain tissues with abundant α-syn pathology but also in AD, PSP, and CBD cases, indicating binding to amyloid β (Aβ) and tau pathology. PET studies showed a rapid entrance of [11C]KAC-50.1 into the brain and relatively rapid washout from cortical brain regions, with slower washout in subcortical regions. [3H]KAC-50.1 is a ligand that binds to fibrillar α-syn but shows limited selectivity for α-syn versus Aβ and tau fibrils. PET studies in NHPs indicate that [11C]KAC-50.1, despite reversible kinetic properties, displays retention in white matter. Altogether, the in vitro and in vivo properties do not support further development of [11C]KAC-50.1 as a PET imaging agent.

聚集的α-突触核蛋白(α-syn)的积累是帕金森病(PD)和其他突触核蛋白病的病理标志。在此,我们报告了针对α-syn纤维蛋白第2位点的体外表征,以及对KAC-50.1作为潜在的α-syn正电子发射断层扫描(PET)放射性配体的NHP体内评估。临床前研究采用死后脑成像技术、放射性配体结合和生化研究等多维方法进行。在这些实验之后,使用[11C]KAC-50.1对猕猴进行了 PET 成像。[3H]KAC-50.1与重组α-syn纤维的第2位点的KD值为35 nM。[3H]KAC-50.1与大量α-syn病变的脑组织以及AD、PSP和CBD病例中的[3H]KAC-50.1都有特异性结合,表明它与淀粉样β(Aβ)和tau病变结合。PET 研究显示,[11C]KAC-50.1 能快速进入大脑,并相对快速地从大脑皮层区域冲出,在皮层下区域的冲出速度较慢。[3H]KAC-50.1是一种能与纤维状α-syn结合的配体,但相对于Aβ和tau纤维而言,它对α-syn的选择性有限。在 NHPs 中进行的 PET 研究表明,尽管[11C]KAC-50.1 具有可逆的动力学特性,但它仍能在白质中保留。总之,体外和体内特性不支持将[11C]KAC-50.1进一步开发为 PET 成像剂。
{"title":"Identification and In Vitro and In Vivo Characterization of KAC-50.1 as a Potential α-Synuclein PET Radioligand","authors":"Dinahlee Saturnino Guarino*,&nbsp;Patricia Miranda Azpiazu,&nbsp;Dan Sunnemark,&nbsp;Charles S. Elmore,&nbsp;Jonas Bergare,&nbsp;Markus Artelsmair,&nbsp;Gunnar Nordvall,&nbsp;Anton Forsberg Morén,&nbsp;Zhisheng Jia,&nbsp;Miguel Cortes-Gonzalez,&nbsp;Robert H. Mach,&nbsp;Kyle C. Wilcox,&nbsp;Sjoerd Finnema,&nbsp;Magnus Schou and Andrea Varrone*,&nbsp;","doi":"10.1021/acschemneuro.4c0049310.1021/acschemneuro.4c00493","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00493https://doi.org/10.1021/acschemneuro.4c00493","url":null,"abstract":"<p >The accumulation of aggregated α-synuclein (α-syn) is a pathological hallmark of Parkinson’s disease (PD) and other synucleinopathies. Here within, we report the in vitro characterization targeting site 2 of α-syn fibrils and in vivo evaluation of NHPs of KAC-50.1 as a potential α-syn positron emission tomography (PET) radioligand. Preclinical studies were performed using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. These experiments were followed by PET imaging in cynomolgus monkeys using [<sup>11</sup>C]KAC-50.1. [3H]KAC-50.1 displayed a KD of 35 nM toward site 2 in recombinant α-syn fibrils. Specific binding of [3H]KAC-50.1 was observed in brain tissues with abundant α-syn pathology but also in AD, PSP, and CBD cases, indicating binding to amyloid β (Aβ) and tau pathology. PET studies showed a rapid entrance of [<sup>11</sup>C]KAC-50.1 into the brain and relatively rapid washout from cortical brain regions, with slower washout in subcortical regions. [3H]KAC-50.1 is a ligand that binds to fibrillar α-syn but shows limited selectivity for α-syn versus Aβ and tau fibrils. PET studies in NHPs indicate that [<sup>11</sup>C]KAC-50.1, despite reversible kinetic properties, displays retention in white matter. Altogether, the in vitro and in vivo properties do not support further development of [<sup>11</sup>C]KAC-50.1 as a PET imaging agent.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 22","pages":"4210–4219 4210–4219"},"PeriodicalIF":4.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschemneuro.4c00493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aromatic Amino Acid Hydroxylases as Off-Targets of Histone Deacetylase Inhibitors 作为组蛋白去乙酰化酶抑制剂非靶点的芳香族氨基酸羟化酶
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-10 DOI: 10.1021/acschemneuro.4c0034610.1021/acschemneuro.4c00346
Anne Baumann, Niklas Papenkordt, Dina Robaa, Peter D. Szigetvari, Anja Vogelmann, Franz Bracher, Wolfgang Sippl, Manfred Jung and Jan Haavik*, 

The aromatic amino acid hydroxylases (AAAHs) phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylases 1 and 2 are structurally related enzymes that contain an active site iron atom and depend on tetrahydrobiopterin (BH4) as cosubstrate. Due to their important roles in synthesis of serotonin, dopamine, noradrenaline, and adrenaline and their involvement in cardiovascular, neurological, and endocrine disorders, AAAHs have been targeted by substrate analogs, iron chelators, and allosteric ligands. Phenylalanine hydroxylase is also off-target of the histone deacetylase (HDAC) inhibitor panobinostat. To systematically explore the binding of HDAC inhibitors to AAAHs, we screened a library of 307 HDAC inhibitors and structural analogs against tryptophan hydroxylase 1 using a fluorescence-based thermal stability assay, followed by activity assays. Selected hits were enzymatically tested against all four purified human AAAHs. Cellular thermal shift assay was performed for phenylalanine hydroxylase. We show that panobinostat and structurally related compounds such as TB57, which similarly to panobinostat also contains a cinnamoyl hydroxamate, bind to human AAAHs and inhibit these enzymes with high selectivity within the class (panobinostat inhibition (IC50): phenylalanine hydroxylase (18 nM) > tyrosine hydroxylase (450 nM) > tryptophan hydroxylase 1 (1960 nM). This study shows that panobinostat and related hydroxamic acid type HDAC inhibitors inhibit all AAAHs at therapeutically relevant concentrations. Our results warrant further investigations of the off-target relevance of HDAC inhibitors intended for clinical use and provide directions for new dual HDAC/AAAH and selective AAAH inhibitors. These findings may also provide a new mechanistic link between regulation of histone modification, AAAH function, and monoaminergic neurotransmission.

芳香族氨基酸羟化酶(AAAHs)苯丙氨酸羟化酶、酪氨酸羟化酶和色氨酸羟化酶 1 和 2 是结构相关的酶,含有一个活性位点铁原子,依赖四氢生物蝶呤(BH4)作为共底物。由于 AAAHs 在合成血清素、多巴胺、去甲肾上腺素和肾上腺素中的重要作用,以及它们在心血管、神经和内分泌疾病中的参与作用,它们已成为底物类似物、铁螯合剂和异位配体的靶标。苯丙氨酸羟化酶也是组蛋白去乙酰化酶(HDAC)抑制剂帕诺比诺司他的非靶标。为了系统地探索 HDAC 抑制剂与 AAAHs 的结合,我们使用基于荧光的热稳定性测定法筛选了 307 种 HDAC 抑制剂和结构类似物库,以测定色氨酸羟化酶 1 的活性。针对所有四种纯化的人类 AAAHs 对选定的抑制剂进行了酶学测试。对苯丙氨酸羟化酶进行了细胞热转移测定。我们的研究表明,帕诺比诺司他和结构相关的化合物(如 TB57,与帕诺比诺司他类似,也含有肉桂酰羟酰胺)能与人类 AAAHs 结合,并在同类药物中以高选择性抑制这些酶(帕诺比诺司他抑制作用(IC50):苯丙氨酸羟化酶(18 nM)> 酪氨酸羟化酶(450 nM)> 色氨酸羟化酶 1(1960 nM))。这项研究表明,帕诺比诺司他和相关的羟肟酸型 HDAC 抑制剂在治疗相关浓度下可抑制所有 AAAHs。我们的研究结果值得进一步研究用于临床的 HDAC 抑制剂的脱靶相关性,并为新的 HDAC/AAAH 双重抑制剂和选择性 AAAH 抑制剂提供了方向。这些发现还可能为组蛋白修饰调控、AAAH 功能和单胺类神经递质之间提供了新的机制联系。
{"title":"Aromatic Amino Acid Hydroxylases as Off-Targets of Histone Deacetylase Inhibitors","authors":"Anne Baumann,&nbsp;Niklas Papenkordt,&nbsp;Dina Robaa,&nbsp;Peter D. Szigetvari,&nbsp;Anja Vogelmann,&nbsp;Franz Bracher,&nbsp;Wolfgang Sippl,&nbsp;Manfred Jung and Jan Haavik*,&nbsp;","doi":"10.1021/acschemneuro.4c0034610.1021/acschemneuro.4c00346","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00346https://doi.org/10.1021/acschemneuro.4c00346","url":null,"abstract":"<p >The aromatic amino acid hydroxylases (AAAHs) phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylases 1 and 2 are structurally related enzymes that contain an active site iron atom and depend on tetrahydrobiopterin (BH<sub>4</sub>) as cosubstrate. Due to their important roles in synthesis of serotonin, dopamine, noradrenaline, and adrenaline and their involvement in cardiovascular, neurological, and endocrine disorders, AAAHs have been targeted by substrate analogs, iron chelators, and allosteric ligands. Phenylalanine hydroxylase is also off-target of the histone deacetylase (HDAC) inhibitor panobinostat. To systematically explore the binding of HDAC inhibitors to AAAHs, we screened a library of 307 HDAC inhibitors and structural analogs against tryptophan hydroxylase 1 using a fluorescence-based thermal stability assay, followed by activity assays. Selected hits were enzymatically tested against all four purified human AAAHs. Cellular thermal shift assay was performed for phenylalanine hydroxylase. We show that panobinostat and structurally related compounds such as TB57, which similarly to panobinostat also contains a cinnamoyl hydroxamate, bind to human AAAHs and inhibit these enzymes with high selectivity within the class (panobinostat inhibition (IC<sub>50</sub>): phenylalanine hydroxylase (18 nM) &gt; tyrosine hydroxylase (450 nM) &gt; tryptophan hydroxylase 1 (1960 nM). This study shows that panobinostat and related hydroxamic acid type HDAC inhibitors inhibit all AAAHs at therapeutically relevant concentrations. Our results warrant further investigations of the off-target relevance of HDAC inhibitors intended for clinical use and provide directions for new dual HDAC/AAAH and selective AAAH inhibitors. These findings may also provide a new mechanistic link between regulation of histone modification, AAAH function, and monoaminergic neurotransmission.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 22","pages":"4143–4155 4143–4155"},"PeriodicalIF":4.1,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschemneuro.4c00346","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dexmedetomidine Attenuates Neuroinflammation-Mediated Hippocampal Neurogenesis Impairment in Sepsis-Associated Encephalopathy Mice through Central α2A-Adrenoceptor 右美托咪定通过中枢α2A-肾上腺素受体减轻脓毒症相关脑病小鼠神经炎症介导的海马神经发生障碍
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-08 DOI: 10.1021/acschemneuro.4c0048610.1021/acschemneuro.4c00486
Xinlong Zhang, Yue Feng, Yi Zhong, Rui Ding, Yaoyi Guo, Fan Jiang, Yan Xing, Hongwei Shi, Hongguang Bao and Yanna Si*, 

Sepsis-associated encephalopathy (SAE), one of the common complications of sepsis, is associated with higher ICU mortality, prolonged hospitalization, and long-term cognitive decline. Sepsis can induce neuroinflammation, which negatively affects hippocampal neurogenesis. Dexmedetomidine has been shown to protect against SAE. However, the potential mechanism remains unclear. In this study, we added lipopolysaccharide (LPS)-stimulated astrocytes-conditioned media (LPS-CM) to neural stem cells (NSCs) culture, which were pretreated with dexmedetomidine in the presence or absence of the α2-adrenoceptor antagonist yohimbine or the α2A-adrenoceptor antagonist BRL-44408. LPS-CM impaired the neurogenesis of NSCs, characterized by decreased proliferation, enhanced gliogenesis, and declined viability. Dexmedetomidine alleviated LPS-CM-induced impairment of neurogenesis in a dose-dependent manner. Yohimbine, as well as BRL-44408, reversed the effects of dexmedetomidine. We established a mouse model of SAE via cecal ligation and perforation (CLP). CLP-induced astrocyte-related neuroinflammation and hippocampal neurogenesis deficits, accompanied by learning and memory decline, which were reversed by dexmedetomidine. The effect of dexmedetomidine was blocked by BRL-44408. Collectively, our findings support the conclusion that dexmedetomidine can protect against SAE, likely mediated by the combination of inhibiting neuroinflammation via the astrocytic α2A-adrenoceptor with attenuating neuroinflammation-induced hippocampal neurogenesis deficits via NSCs α2A-adrenoceptor.

败血症相关脑病(SAE)是败血症的常见并发症之一,与较高的重症监护病房死亡率、住院时间延长和长期认知能力下降有关。脓毒症可诱发神经炎症,从而对海马神经发生产生负面影响。右美托咪定已被证明可防止 SAE。然而,其潜在机制仍不清楚。在本研究中,我们在神经干细胞(NSCs)培养中加入了脂多糖(LPS)刺激的星形胶质细胞条件培养基(LPS-CM),并在有或没有α2-肾上腺素受体拮抗剂育亨宾或α2A-肾上腺素受体拮抗剂BRL-44408的情况下对NSCs进行右美托咪定预处理。LPS-CM损害了NSCs的神经发生,表现为增殖减少、胶质细胞生成增强和活力下降。右美托咪定以剂量依赖的方式减轻了 LPS-CM 诱导的神经发生损伤。育亨宾和 BRL-44408 可逆转右美托咪定的作用。我们通过盲肠结扎和穿孔(CLP)建立了小鼠 SAE 模型。CLP诱发星形胶质细胞相关神经炎症和海马神经发生缺陷,并伴有学习和记忆力下降,右美托咪定可逆转这些症状。右美托咪定的作用被 BRL-44408 阻断。总之,我们的研究结果支持了右美托咪定可预防SAE的结论,这可能是通过星形胶质细胞α2A肾上腺素受体抑制神经炎症,并通过NSCsα2A肾上腺素受体减轻神经炎症诱导的海马神经元生成缺陷的综合作用。
{"title":"Dexmedetomidine Attenuates Neuroinflammation-Mediated Hippocampal Neurogenesis Impairment in Sepsis-Associated Encephalopathy Mice through Central α2A-Adrenoceptor","authors":"Xinlong Zhang,&nbsp;Yue Feng,&nbsp;Yi Zhong,&nbsp;Rui Ding,&nbsp;Yaoyi Guo,&nbsp;Fan Jiang,&nbsp;Yan Xing,&nbsp;Hongwei Shi,&nbsp;Hongguang Bao and Yanna Si*,&nbsp;","doi":"10.1021/acschemneuro.4c0048610.1021/acschemneuro.4c00486","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00486https://doi.org/10.1021/acschemneuro.4c00486","url":null,"abstract":"<p >Sepsis-associated encephalopathy (SAE), one of the common complications of sepsis, is associated with higher ICU mortality, prolonged hospitalization, and long-term cognitive decline. Sepsis can induce neuroinflammation, which negatively affects hippocampal neurogenesis. Dexmedetomidine has been shown to protect against SAE. However, the potential mechanism remains unclear. In this study, we added lipopolysaccharide (LPS)-stimulated astrocytes-conditioned media (LPS-CM) to neural stem cells (NSCs) culture, which were pretreated with dexmedetomidine in the presence or absence of the α2-adrenoceptor antagonist yohimbine or the α2A-adrenoceptor antagonist BRL-44408. LPS-CM impaired the neurogenesis of NSCs, characterized by decreased proliferation, enhanced gliogenesis, and declined viability. Dexmedetomidine alleviated LPS-CM-induced impairment of neurogenesis in a dose-dependent manner. Yohimbine, as well as BRL-44408, reversed the effects of dexmedetomidine. We established a mouse model of SAE via cecal ligation and perforation (CLP). CLP-induced astrocyte-related neuroinflammation and hippocampal neurogenesis deficits, accompanied by learning and memory decline, which were reversed by dexmedetomidine. The effect of dexmedetomidine was blocked by BRL-44408. Collectively, our findings support the conclusion that dexmedetomidine can protect against SAE, likely mediated by the combination of inhibiting neuroinflammation via the astrocytic α2A-adrenoceptor with attenuating neuroinflammation-induced hippocampal neurogenesis deficits via NSCs α2A-adrenoceptor.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 22","pages":"4185–4201 4185–4201"},"PeriodicalIF":4.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 and HSV-1 Induce Amyloid Aggregation in Human CSF Resulting in Drastic Soluble Protein Depletion SARS-CoV-2 和 HSV-1 在人类 CSF 中诱导淀粉样蛋白聚集,导致可溶性蛋白急剧减少
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-07 DOI: 10.1021/acschemneuro.4c0063610.1021/acschemneuro.4c00636
Wanda Christ, Sebastian Kapell, Michal J. Sobkowiak, Georgios Mermelekas, Björn Evertsson, Helena Sork, Osama Saher, Safa Bazaz, Oskar Gustafsson, Eduardo I. Cardenas, Viviana Villa, Roberta Ricciarelli, Johan K. Sandberg, Jonas Bergquist, Andrea Sturchio, Per Svenningsson, Tarja Malm, Alberto J. Espay, Maria Pernemalm, Anders Lindén, Jonas Klingström, Samir El Andaloussi and Kariem Ezzat*, 

The corona virus (SARS-CoV-2) pandemic and the resulting long-term neurological complications in patients, known as long COVID, have renewed interest in the correlation between viral infections and neurodegenerative brain disorders. While many viruses can reach the central nervous system (CNS) causing acute or chronic infections (such as herpes simplex virus 1, HSV-1), the lack of a clear mechanistic link between viruses and protein aggregation into amyloids, a characteristic of several neurodegenerative diseases, has rendered such a connection elusive. Recently, we showed that viruses can induce aggregation of purified amyloidogenic proteins via the direct physicochemical mechanism of heterogeneous nucleation (HEN). In the current study, we show that the incubation of HSV-1 and SARS-CoV-2 with human cerebrospinal fluid (CSF) leads to the amyloid aggregation of several proteins known to be involved in neurodegenerative diseases, such as APLP1 (amyloid β precursor like protein 1), ApoE, clusterin, α2-macroglobulin, PGK-1 (phosphoglycerate kinase 1), ceruloplasmin, nucleolin, 14-3-3, transthyretin, and vitronectin. Importantly, UV-inactivation of SARS-CoV-2 does not affect its ability to induce amyloid aggregation, as amyloid formation is dependent on viral surface catalysis via HEN and not its ability to replicate. Additionally, viral amyloid induction led to a dramatic drop in the soluble protein concentration in the CSF. Our results show that viruses can physically induce amyloid aggregation of proteins in human CSF and result in soluble protein depletion, thus providing a potential mechanism that may account for the association between persistent and latent/reactivating brain infections and neurodegenerative diseases.

科罗娜病毒(SARS-CoV-2)大流行以及由此导致的患者长期神经系统并发症(称为长 COVID)再次引起了人们对病毒感染与脑神经退行性疾病之间相关性的关注。虽然许多病毒(如单纯疱疹病毒 1,HSV-1)可进入中枢神经系统(CNS)引起急性或慢性感染,但由于病毒与蛋白质聚集成淀粉样蛋白(几种神经退行性疾病的特征)之间缺乏明确的机理联系,这种联系一直难以捉摸。最近,我们发现病毒可以通过异质成核(HEN)的直接物理化学机制诱导纯化的淀粉样蛋白聚集。在本研究中,我们发现 HSV-1 和 SARS-CoV-2 与人类脑脊液(CSF)共孵育会导致几种已知与神经退行性疾病有关的蛋白质发生淀粉样聚集、如 APLP1(淀粉样β前体蛋白 1)、载脂蛋白、集束蛋白、α2-巨球蛋白、PGK-1(磷酸甘油激酶 1)、脑磷脂蛋白、核蛋白、14-3-3、转甲状腺素和玻璃连蛋白。重要的是,紫外线灭活 SARS-CoV-2 并不影响其诱导淀粉样蛋白聚集的能力,因为淀粉样蛋白的形成依赖于病毒表面通过 HEN 的催化作用,而不是其复制能力。此外,病毒淀粉样蛋白诱导导致脑脊液中可溶性蛋白浓度急剧下降。我们的研究结果表明,病毒可以物理诱导人类 CSF 中的蛋白质发生淀粉样聚集,并导致可溶性蛋白质耗竭,从而提供了一种潜在的机制,可以解释持续性和潜伏性/再活化性脑部感染与神经退行性疾病之间的关联。
{"title":"SARS-CoV-2 and HSV-1 Induce Amyloid Aggregation in Human CSF Resulting in Drastic Soluble Protein Depletion","authors":"Wanda Christ,&nbsp;Sebastian Kapell,&nbsp;Michal J. Sobkowiak,&nbsp;Georgios Mermelekas,&nbsp;Björn Evertsson,&nbsp;Helena Sork,&nbsp;Osama Saher,&nbsp;Safa Bazaz,&nbsp;Oskar Gustafsson,&nbsp;Eduardo I. Cardenas,&nbsp;Viviana Villa,&nbsp;Roberta Ricciarelli,&nbsp;Johan K. Sandberg,&nbsp;Jonas Bergquist,&nbsp;Andrea Sturchio,&nbsp;Per Svenningsson,&nbsp;Tarja Malm,&nbsp;Alberto J. Espay,&nbsp;Maria Pernemalm,&nbsp;Anders Lindén,&nbsp;Jonas Klingström,&nbsp;Samir El Andaloussi and Kariem Ezzat*,&nbsp;","doi":"10.1021/acschemneuro.4c0063610.1021/acschemneuro.4c00636","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00636https://doi.org/10.1021/acschemneuro.4c00636","url":null,"abstract":"<p >The corona virus (SARS-CoV-2) pandemic and the resulting long-term neurological complications in patients, known as long COVID, have renewed interest in the correlation between viral infections and neurodegenerative brain disorders. While many viruses can reach the central nervous system (CNS) causing acute or chronic infections (such as herpes simplex virus 1, HSV-1), the lack of a clear mechanistic link between viruses and protein aggregation into amyloids, a characteristic of several neurodegenerative diseases, has rendered such a connection elusive. Recently, we showed that viruses can induce aggregation of purified amyloidogenic proteins via the direct physicochemical mechanism of heterogeneous nucleation (HEN). In the current study, we show that the incubation of HSV-1 and SARS-CoV-2 with human cerebrospinal fluid (CSF) leads to the amyloid aggregation of several proteins known to be involved in neurodegenerative diseases, such as APLP1 (amyloid β precursor like protein 1), ApoE, clusterin, α2-macroglobulin, PGK-1 (phosphoglycerate kinase 1), ceruloplasmin, nucleolin, 14-3-3, transthyretin, and vitronectin. Importantly, UV-inactivation of SARS-CoV-2 does not affect its ability to induce amyloid aggregation, as amyloid formation is dependent on viral surface catalysis via HEN and not its ability to replicate. Additionally, viral amyloid induction led to a dramatic drop in the soluble protein concentration in the CSF. Our results show that viruses can physically induce amyloid aggregation of proteins in human CSF and result in soluble protein depletion, thus providing a potential mechanism that may account for the association between persistent and latent/reactivating brain infections and neurodegenerative diseases.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 22","pages":"4095–4104 4095–4104"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-DOPA Promotes Functional Proliferation Through GPR143, Specific L-DOPA Receptor of Astrocytes 左旋多巴通过星形胶质细胞的特异性左旋多巴受体 GPR143 促进功能性增殖
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-07 DOI: 10.1021/acschemneuro.4c0031110.1021/acschemneuro.4c00311
Ye-Ji Kim, Gyeong Min Park, Woo Kyung Cho* and Dong Ho Woo*, 

l-3,4-Dihydroxyphenylalanine (levodopa and L-DOPA in this text), alongside dopamine, boasts high biocompatibility, prompting industrial demand for its use as a coating material. Indeed, the effectiveness of L-DOPA is steadily rising as it serves as an oral therapeutic agent for neurodegenerative brain diseases, particularly Parkinson’s disease (PD). However, the effects of L-DOPA on the growth and function of astrocytes, the main glial cells, and the most numerous glial cells in the brain, are unknown. Here, we investigated whether L-DOPA is possible as a coating material on cover glass and polystyrene for rat primary astrocytes. The coating state of L-DOPA on the cover glass and polystyrene was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). Interestingly, L-DOPA coated on the cover glass promoted the proliferation of astrocytes but not neurons. Furthermore, L-DOPA coated on the cover glass, as opposed to polystyrene, facilitated the proliferation of the astrocytes. The astrocytes grown on L-DOPA-coated cover glasses exhibited functional receptor-activated Ca2+ transients through the activation of protease-activated receptor subtype 1 (PAR-1), recognized as an astrocytic functional marker. However, cover glass coated with 0, 500, 1000, 2000, and 4000 μg/mL L-DOPA maintained astrocyte viability, while supplementation with 500 and 1000 μM L-DOPA significantly decreased astrocyte viability. This suggests that treatments with free 500 and 1000 μM L-DOPA significantly reduced the number of astrocytes. Both Pimozide, an inhibitor of G protein-coupled receptor 143 (GPR143), also known as Ocular albinism type 1 (OA1), and CCG2046, an inhibitor of regulator of G protein signaling 4 (RGS4), reduced the viability of astrocytes on cover glass coated with L-DOPA compared to astrocytes on cover glass coated with poly-d-lysine (PDL). This suggests that L-DOPA promotes astrocyte proliferation through activation of the GPR143 signaling pathway. These findings imply that L-DOPA proliferates functional astrocytes through the activation of GPR143. These results are the first report that L-DOPA coating cover glass proliferates rat primary astrocytes with the activation of GPR143. The discovery that levodopa enhances cell adhesion can significantly influence research in multiple ways. It provides insights into cell behavior, disease mechanisms, and potential therapeutic applications in tissue engineering and regenerative medicine. Additionally, it offers opportunities to explore novel approaches for improving cell-based therapies and tissue regeneration. Overall, this finding opens up new avenues for research, with broad implications across various scientific fields.

l-3,4-二羟基苯丙氨酸(本文中为左旋多巴和 L-DOPA)与多巴胺一样,具有很高的生物相容性,因此工业界需要将其用作涂层材料。事实上,左旋多巴作为一种口服治疗剂,可用于治疗脑神经退行性疾病,尤其是帕金森病(PD),其疗效正在稳步上升。然而,L-DOPA 对星形胶质细胞(大脑中主要的胶质细胞和数量最多的胶质细胞)的生长和功能的影响尚不清楚。在此,我们研究了 L-DOPA 是否可以作为大鼠原代星形胶质细胞在盖玻片和聚苯乙烯上的涂层材料。我们通过 X 射线光电子能谱(XPS)和静态水接触角(WCA)对 L-DOPA 在盖板玻璃和聚苯乙烯上的涂覆状态进行了表征。有趣的是,涂覆在盖板玻璃上的 L-DOPA 可促进星形胶质细胞的增殖,但不能促进神经元的增殖。此外,与聚苯乙烯相比,涂在盖玻片上的 L-DOPA 能促进星形胶质细胞的增殖。在涂有 L-DOPA 的盖玻片上生长的星形胶质细胞通过激活蛋白酶活化受体亚型 1(PAR-1)表现出功能性的受体活化 Ca2+ 瞬态,PAR-1 是公认的星形胶质细胞功能标记。然而,涂有 0、500、1000、2000 和 4000 μg/mL L-DOPA 的盖玻片能维持星形胶质细胞的活力,而补充 500 和 1000 μM L-DOPA 则会显著降低星形胶质细胞的活力。这表明,游离 500 和 1000 μM L-DOPA 能显著减少星形胶质细胞的数量。与涂有聚二赖氨酸(PDL)的盖玻片上的星形胶质细胞相比,涂有 L-DOPA 的盖玻片上的星形胶质细胞的活力降低了。这表明 L-DOPA 通过激活 GPR143 信号通路促进星形胶质细胞增殖。这些发现意味着 L-DOPA 可通过激活 GPR143 使功能性星形胶质细胞增殖。这些结果首次报道了左旋多巴涂覆盖玻片可通过激活 GPR143 使大鼠原发性星形胶质细胞增殖。左旋多巴能增强细胞粘附性这一发现能在多个方面对研究产生重大影响。它为细胞行为、疾病机制以及组织工程和再生医学中的潜在治疗应用提供了见解。此外,它还为探索改进细胞疗法和组织再生的新方法提供了机会。总之,这一发现开辟了新的研究途径,对各个科学领域都有广泛的影响。
{"title":"L-DOPA Promotes Functional Proliferation Through GPR143, Specific L-DOPA Receptor of Astrocytes","authors":"Ye-Ji Kim,&nbsp;Gyeong Min Park,&nbsp;Woo Kyung Cho* and Dong Ho Woo*,&nbsp;","doi":"10.1021/acschemneuro.4c0031110.1021/acschemneuro.4c00311","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00311https://doi.org/10.1021/acschemneuro.4c00311","url":null,"abstract":"<p >l-3,4-Dihydroxyphenylalanine (levodopa and L-DOPA in this text), alongside dopamine, boasts high biocompatibility, prompting industrial demand for its use as a coating material. Indeed, the effectiveness of L-DOPA is steadily rising as it serves as an oral therapeutic agent for neurodegenerative brain diseases, particularly Parkinson’s disease (PD). However, the effects of L-DOPA on the growth and function of astrocytes, the main glial cells, and the most numerous glial cells in the brain, are unknown. Here, we investigated whether L-DOPA is possible as a coating material on cover glass and polystyrene for rat primary astrocytes. The coating state of L-DOPA on the cover glass and polystyrene was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). Interestingly, L-DOPA coated on the cover glass promoted the proliferation of astrocytes but not neurons. Furthermore, L-DOPA coated on the cover glass, as opposed to polystyrene, facilitated the proliferation of the astrocytes. The astrocytes grown on L-DOPA-coated cover glasses exhibited functional receptor-activated Ca<sup>2+</sup> transients through the activation of protease-activated receptor subtype 1 (PAR-1), recognized as an astrocytic functional marker. However, cover glass coated with 0, 500, 1000, 2000, and 4000 μg/mL L-DOPA maintained astrocyte viability, while supplementation with 500 and 1000 μM L-DOPA significantly decreased astrocyte viability. This suggests that treatments with free 500 and 1000 μM L-DOPA significantly reduced the number of astrocytes. Both Pimozide, an inhibitor of G protein-coupled receptor 143 (GPR143), also known as Ocular albinism type 1 (OA1), and CCG2046, an inhibitor of regulator of G protein signaling 4 (RGS4), reduced the viability of astrocytes on cover glass coated with L-DOPA compared to astrocytes on cover glass coated with poly-<span>d</span>-lysine (PDL). This suggests that L-DOPA promotes astrocyte proliferation through activation of the GPR143 signaling pathway. These findings imply that L-DOPA proliferates functional astrocytes through the activation of GPR143. These results are the first report that L-DOPA coating cover glass proliferates rat primary astrocytes with the activation of GPR143. The discovery that levodopa enhances cell adhesion can significantly influence research in multiple ways. It provides insights into cell behavior, disease mechanisms, and potential therapeutic applications in tissue engineering and regenerative medicine. Additionally, it offers opportunities to explore novel approaches for improving cell-based therapies and tissue regeneration. Overall, this finding opens up new avenues for research, with broad implications across various scientific fields.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 22","pages":"4132–4142 4132–4142"},"PeriodicalIF":4.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience. 揭开芯片人脑的神秘面纱:重构神经元组合和探索神经科学合理应用的奥德赛。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-06 Epub Date: 2024-10-22 DOI: 10.1021/acschemneuro.4c00388
Subhadra Nandi, Satyajit Ghosh, Shubham Garg, Surajit Ghosh

The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.

大脑是一个极其复杂的结构,由数百万个神经网络组成。在发育和细胞神经科学领域,探究大脑高度复杂的动态变化仍然是一项挑战。此外,破译几种线索如何影响神经元生长及其与不同脑细胞类型(如星形胶质细胞和小胶质细胞)的相互作用也是一项艰巨的任务。传统的体外宏观细胞培养技术提供了简单直接的方法。然而,它们往往无法深入了解神经元网络形成的复杂现象和相关微环境。为了规避传统细胞培养方法的弊端,基于微流体设备的微平台的发展近来取得了长足进步,成为前景广阔的替代方法。微流体设备能对分隔的细胞培养进行精确的时空控制。这一特点有助于研究人员在可调节的环境中重建错综复杂的神经元细胞结构。因此,在这篇综述中,我们主要关注在微流控设备中模拟神经元发育,以及研究人员在芯片上模拟神经发生所采用的各种策略。此外,我们还概述了芯片脑模型在重现血脑屏障和神经退行性疾病方面的应用,以及随后的高通量药物筛选。这些芯片上实验室技术在芯片上模拟大脑方面具有巨大潜力,可为了解大脑的基本过程提供宝贵见解。芯片上的大脑模型还将成为开发新型神经治疗药物的创新平台,以治疗多种神经系统疾病。
{"title":"Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience.","authors":"Subhadra Nandi, Satyajit Ghosh, Shubham Garg, Surajit Ghosh","doi":"10.1021/acschemneuro.4c00388","DOIUrl":"10.1021/acschemneuro.4c00388","url":null,"abstract":"<p><p>The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional <i>in vitro</i> macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"3828-3847"},"PeriodicalIF":4.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Chemical Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1