Shan Ping Yu, Emily Choi, Michael Q Jiang, Ling Wei
{"title":"缺血性中风和晚发性阿尔茨海默病的急性和慢性兴奋性毒性。","authors":"Shan Ping Yu, Emily Choi, Michael Q Jiang, Ling Wei","doi":"10.4103/NRR.NRR-D-24-00398","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated \"silent\" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease.\",\"authors\":\"Shan Ping Yu, Emily Choi, Michael Q Jiang, Ling Wei\",\"doi\":\"10.4103/NRR.NRR-D-24-00398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated \\\"silent\\\" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-00398\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00398","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease.
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.