基于DFT方法实现高电子迁移率y系列非富勒烯受体的端基调制

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2025-04-13 DOI:10.1021/acsomega.4c1027310.1021/acsomega.4c10273
Zhengli Zhang, Zhao Ding, Xiang Guo, Chen Yang, Yi Wang, Yong Deng, Shaolu Chen, Xuefei Liu* and Junli Li*, 
{"title":"基于DFT方法实现高电子迁移率y系列非富勒烯受体的端基调制","authors":"Zhengli Zhang,&nbsp;Zhao Ding,&nbsp;Xiang Guo,&nbsp;Chen Yang,&nbsp;Yi Wang,&nbsp;Yong Deng,&nbsp;Shaolu Chen,&nbsp;Xuefei Liu* and Junli Li*,&nbsp;","doi":"10.1021/acsomega.4c1027310.1021/acsomega.4c10273","DOIUrl":null,"url":null,"abstract":"<p >The joining of Y6 has effectively promoted the power conversion efficiency (PCE) of organic solar cells, and the impact of its end-group modification on the PCE is significant. Here, eight different groups are introduced to modify the end-group of Y6, forming eight acceptors named V1, V2, V3, V4, V5, V6, V7, and R. The excited states, light absorption properties, and intermolecular electron transfer are discussed by the density functional theory. The density of state, average local ionization energy, Hirshfeld population, ionization potential, electron affinity, and electron mobility are also calculated. Results show that V7 obtains the largest red-shift in the UV–visible absorption spectra (787.55 nm). V7 and V5 have better electronic coupling while exhibiting the leading electron mobility (0.9577 and 0.4383 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>). Acceptors with rigid skeletons, good planarity, minimal steric hindrance, and locally uniform ALIE distributions have the potential to achieve higher electron mobility. These results indicate that precise end-group engineering can effectively regulate the electron mobility of acceptors, thereby increasing the PCE.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"14949–14960 14949–14960"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10273","citationCount":"0","resultStr":"{\"title\":\"End-Group Modulation in a High Electron Mobility Y-Series Nonfullerene Acceptor Achieved Based on the DFT Method\",\"authors\":\"Zhengli Zhang,&nbsp;Zhao Ding,&nbsp;Xiang Guo,&nbsp;Chen Yang,&nbsp;Yi Wang,&nbsp;Yong Deng,&nbsp;Shaolu Chen,&nbsp;Xuefei Liu* and Junli Li*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c1027310.1021/acsomega.4c10273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The joining of Y6 has effectively promoted the power conversion efficiency (PCE) of organic solar cells, and the impact of its end-group modification on the PCE is significant. Here, eight different groups are introduced to modify the end-group of Y6, forming eight acceptors named V1, V2, V3, V4, V5, V6, V7, and R. The excited states, light absorption properties, and intermolecular electron transfer are discussed by the density functional theory. The density of state, average local ionization energy, Hirshfeld population, ionization potential, electron affinity, and electron mobility are also calculated. Results show that V7 obtains the largest red-shift in the UV–visible absorption spectra (787.55 nm). V7 and V5 have better electronic coupling while exhibiting the leading electron mobility (0.9577 and 0.4383 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>). Acceptors with rigid skeletons, good planarity, minimal steric hindrance, and locally uniform ALIE distributions have the potential to achieve higher electron mobility. These results indicate that precise end-group engineering can effectively regulate the electron mobility of acceptors, thereby increasing the PCE.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 15\",\"pages\":\"14949–14960 14949–14960\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10273\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c10273\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c10273","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Y6的加入有效地提高了有机太阳能电池的功率转换效率(PCE),其端基修饰对PCE的影响是显著的。本文引入8个不同的基团修饰Y6的端基,形成了V1、V2、V3、V4、V5、V6、V7和r八个受体,利用密度泛函理论讨论了Y6的激发态、光吸收特性和分子间电子转移。计算了态密度、平均局域电离能、赫希菲尔德居群、电离势、电子亲和和电子迁移率。结果表明,V7在紫外可见吸收光谱中红移最大(787.55 nm);V7和V5的电子耦合性能较好,电子迁移率分别为0.9577和0.4383 cm2 V-1 s-1。具有刚性骨架、良好的平面性、最小的位阻和局部均匀的ALIE分布的受体具有实现更高电子迁移率的潜力。这些结果表明,精确的端基工程可以有效地调节受体的电子迁移率,从而提高PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
End-Group Modulation in a High Electron Mobility Y-Series Nonfullerene Acceptor Achieved Based on the DFT Method

The joining of Y6 has effectively promoted the power conversion efficiency (PCE) of organic solar cells, and the impact of its end-group modification on the PCE is significant. Here, eight different groups are introduced to modify the end-group of Y6, forming eight acceptors named V1, V2, V3, V4, V5, V6, V7, and R. The excited states, light absorption properties, and intermolecular electron transfer are discussed by the density functional theory. The density of state, average local ionization energy, Hirshfeld population, ionization potential, electron affinity, and electron mobility are also calculated. Results show that V7 obtains the largest red-shift in the UV–visible absorption spectra (787.55 nm). V7 and V5 have better electronic coupling while exhibiting the leading electron mobility (0.9577 and 0.4383 cm2 V–1 s–1). Acceptors with rigid skeletons, good planarity, minimal steric hindrance, and locally uniform ALIE distributions have the potential to achieve higher electron mobility. These results indicate that precise end-group engineering can effectively regulate the electron mobility of acceptors, thereby increasing the PCE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Issue Publication Information Issue Editorial Masthead Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1