基于大语言模型的亲二氧化碳分子单元设计

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemical Communications Pub Date : 2025-06-06 DOI:10.1039/D5CC02652K
Konstantinos D. Vogiatzis
{"title":"基于大语言模型的亲二氧化碳分子单元设计","authors":"Konstantinos D. Vogiatzis","doi":"10.1039/D5CC02652K","DOIUrl":null,"url":null,"abstract":"<p >The integration of large language models (LLMs) into chemical sciences presents a transformative approach for molecular design. In this study, we explore the capabilities of LLMs for generating novel molecular structures with enhanced CO<small><sub>2</sub></small> affinity for the development of novel physisorption-based carbon capture technologies. By integrating LLM-generated candidates with DFT-based evaluation, we identified promising physisorption agents and highlighted the synergy between AI and expert-guided chemical research. Notably, LLM-generated structures showcased emergent design strategies, such as cooperative binding motifs, that aligned with domain knowledge and experimental precedent.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" 55","pages":" 10166-10169"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of CO2-philic molecular units with large language models†\",\"authors\":\"Konstantinos D. Vogiatzis\",\"doi\":\"10.1039/D5CC02652K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The integration of large language models (LLMs) into chemical sciences presents a transformative approach for molecular design. In this study, we explore the capabilities of LLMs for generating novel molecular structures with enhanced CO<small><sub>2</sub></small> affinity for the development of novel physisorption-based carbon capture technologies. By integrating LLM-generated candidates with DFT-based evaluation, we identified promising physisorption agents and highlighted the synergy between AI and expert-guided chemical research. Notably, LLM-generated structures showcased emergent design strategies, such as cooperative binding motifs, that aligned with domain knowledge and experimental precedent.</p>\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\" 55\",\"pages\":\" 10166-10169\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc02652k\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc02652k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将大型语言模型(LLMs)整合到化学科学中,为分子设计提供了一种变革性的方法。在本研究中,我们探索了llm生成具有增强CO2亲和力的新型分子结构的能力,以开发新的基于物理吸附的碳捕获技术。通过将法学硕士生成的候选材料与基于dft的评估相结合,我们确定了有前途的物理吸附剂,并强调了人工智能与专家指导的化学研究之间的协同作用。值得注意的是,法学硕士生成的结构展示了紧急设计策略,例如与领域知识和实验先例相一致的合作绑定基序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of CO2-philic molecular units with large language models†

The integration of large language models (LLMs) into chemical sciences presents a transformative approach for molecular design. In this study, we explore the capabilities of LLMs for generating novel molecular structures with enhanced CO2 affinity for the development of novel physisorption-based carbon capture technologies. By integrating LLM-generated candidates with DFT-based evaluation, we identified promising physisorption agents and highlighted the synergy between AI and expert-guided chemical research. Notably, LLM-generated structures showcased emergent design strategies, such as cooperative binding motifs, that aligned with domain knowledge and experimental precedent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
期刊最新文献
Dearomatization [4 + 2] cycloaddition for constructing bridged polycyclic lactams Near-Instantaneous Chemoselective Transfer Hydrogenation of Aldehydes with Visual Endpoint Reporting and Ultrahigh TOF A lysosomal fluorescent probe for imaging of viscosity in tumoral ferroptosis and rheumatoid arthritis mice models Synthesis and transport properties of [Ni3Sn][Ni4−xS2], an n-type metal-rich sulfide with an intergrowth structure Amino-benzo-cinnolines “ABCDyes” as versatile cinnoline-based green emitting fluorophores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1