分支放置对梳状大分子稀溶液性质的影响

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2025-06-12 DOI:10.1021/acs.macromol.5c00323
Robert J. S. Ivancic, Chase B. Thompson, Devin A. Golla, Bintou Koroma, Jack F. Douglas, Sara V. Orski, Debra J. Audus
{"title":"分支放置对梳状大分子稀溶液性质的影响","authors":"Robert J. S. Ivancic, Chase B. Thompson, Devin A. Golla, Bintou Koroma, Jack F. Douglas, Sara V. Orski, Debra J. Audus","doi":"10.1021/acs.macromol.5c00323","DOIUrl":null,"url":null,"abstract":"Branch density and length substantially impact the properties of comb-like polymers. Scientists often use the dilute solution properties of these materials to quantify their architecture. As branch spacing decreases and branch length increases at a fixed molecular mass, dilute solution properties such as the radius of gyration, intrinsic viscosity, and hydrodynamic radius typically decrease because the length of the backbone decreases. However, this decrease is only partially driven by this change in backbone length, even for relatively short branches. While many models focus on predicting the dilute solution properties of these materials with fixed branch spacing, most comb-like polymers exhibit statistical branch spacing which leads to nontrivial changes in excluded volume effects. Using molecular dynamics simulations and the ZENO code, we show how changing the distribution of branches from fixed to statistical and then to diblock affects the dilute solution properties of a coarse-grained linear low-density polyethylene (LLDPE), a canonical comb-like polymer, in 1,2,4-trichlorobenzene, a standard good solvent. This approach explicitly accounts for excluded volume interactions that were not included in prior theories. We extend our previous theoretical work to account for statistical branch spacing and test prior renormalization group estimates of diblocks in good solvent to show that it is consistent with our numerical results. Our approach provides a framework for a more quantitative understanding of chain architecture from dilute solution properties, yielding better structure–property relationships.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Importance of Branch Placement on the Dilute Solution Properties of Comb-like Macromolecules\",\"authors\":\"Robert J. S. Ivancic, Chase B. Thompson, Devin A. Golla, Bintou Koroma, Jack F. Douglas, Sara V. Orski, Debra J. Audus\",\"doi\":\"10.1021/acs.macromol.5c00323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Branch density and length substantially impact the properties of comb-like polymers. Scientists often use the dilute solution properties of these materials to quantify their architecture. As branch spacing decreases and branch length increases at a fixed molecular mass, dilute solution properties such as the radius of gyration, intrinsic viscosity, and hydrodynamic radius typically decrease because the length of the backbone decreases. However, this decrease is only partially driven by this change in backbone length, even for relatively short branches. While many models focus on predicting the dilute solution properties of these materials with fixed branch spacing, most comb-like polymers exhibit statistical branch spacing which leads to nontrivial changes in excluded volume effects. Using molecular dynamics simulations and the ZENO code, we show how changing the distribution of branches from fixed to statistical and then to diblock affects the dilute solution properties of a coarse-grained linear low-density polyethylene (LLDPE), a canonical comb-like polymer, in 1,2,4-trichlorobenzene, a standard good solvent. This approach explicitly accounts for excluded volume interactions that were not included in prior theories. We extend our previous theoretical work to account for statistical branch spacing and test prior renormalization group estimates of diblocks in good solvent to show that it is consistent with our numerical results. Our approach provides a framework for a more quantitative understanding of chain architecture from dilute solution properties, yielding better structure–property relationships.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.5c00323\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00323","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

分支密度和长度对梳状聚合物的性能有很大影响。科学家们经常利用这些材料的稀溶液特性来量化它们的结构。在固定分子质量下,随着分支间距的减小和分支长度的增加,稀释溶液的性质,如旋转半径、固有粘度和流体动力半径通常会因为主干长度的减小而减小。然而,这种减少只是部分地由主干长度的变化驱动,即使是相对较短的分支。虽然许多模型专注于预测这些具有固定分支间距的材料的稀溶液性质,但大多数梳状聚合物表现出统计分支间距,这导致排除体积效应的重大变化。利用分子动力学模拟和ZENO代码,我们展示了如何改变分支的分布,从固定到统计,然后到双嵌段,影响粗粒线性低密度聚乙烯(LLDPE),一种典型的梳状聚合物,在1,2,4-三氯苯(一种标准的好溶剂)中的稀溶液性质。这种方法明确地解释了先前理论中未包括的被排除的体积相互作用。我们扩展了我们以前的理论工作,以考虑统计分支间距,并测试了良好溶剂中双块的先验重整化群估计,以表明它与我们的数值结果一致。我们的方法为从稀溶液性质中更定量地理解链结构提供了一个框架,从而产生更好的结构-性质关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Importance of Branch Placement on the Dilute Solution Properties of Comb-like Macromolecules
Branch density and length substantially impact the properties of comb-like polymers. Scientists often use the dilute solution properties of these materials to quantify their architecture. As branch spacing decreases and branch length increases at a fixed molecular mass, dilute solution properties such as the radius of gyration, intrinsic viscosity, and hydrodynamic radius typically decrease because the length of the backbone decreases. However, this decrease is only partially driven by this change in backbone length, even for relatively short branches. While many models focus on predicting the dilute solution properties of these materials with fixed branch spacing, most comb-like polymers exhibit statistical branch spacing which leads to nontrivial changes in excluded volume effects. Using molecular dynamics simulations and the ZENO code, we show how changing the distribution of branches from fixed to statistical and then to diblock affects the dilute solution properties of a coarse-grained linear low-density polyethylene (LLDPE), a canonical comb-like polymer, in 1,2,4-trichlorobenzene, a standard good solvent. This approach explicitly accounts for excluded volume interactions that were not included in prior theories. We extend our previous theoretical work to account for statistical branch spacing and test prior renormalization group estimates of diblocks in good solvent to show that it is consistent with our numerical results. Our approach provides a framework for a more quantitative understanding of chain architecture from dilute solution properties, yielding better structure–property relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1