太赫兹波在砷化镓波导中光学诱导时间边界的频率下变频

IF 7.5 2区 物理与天体物理 Q1 Engineering Nanophotonics Pub Date : 2024-05-18 DOI:10.1515/nanoph-2024-0010
Keisuke Takano, Satoko Uchiyama, Shintaro Nagase, Yuka Tsuchimoto, Toshihiro Nakanishi, Yosuke Nakata, Joel Pérez-Urquizo, Julien Madéo, Keshav M. Dani, Fumiaki Miyamaru
{"title":"太赫兹波在砷化镓波导中光学诱导时间边界的频率下变频","authors":"Keisuke Takano, Satoko Uchiyama, Shintaro Nagase, Yuka Tsuchimoto, Toshihiro Nakanishi, Yosuke Nakata, Joel Pérez-Urquizo, Julien Madéo, Keshav M. Dani, Fumiaki Miyamaru","doi":"10.1515/nanoph-2024-0010","DOIUrl":null,"url":null,"abstract":"In this study, the frequency down-conversion of terahertz waves is analytically and experimentally demonstrated at the temporal boundaries within a GaAs waveguide. The temporal boundary is established by photoexciting the top surface of the waveguide, thereby instantaneously increasing its electrical conductivity. This photoexcited waveguide supports a transverse electromagnetic (TEM) mode with a frequency lower than those of the transverse magnetic (TM) modes present in the original waveguide. At the temporal boundary, the incident TM mode couples with the TEM mode, resulting in frequency down-conversion. Subtracting the propagation loss from the frequency-converted components indicates that the frequency conversion occurs with an efficiency consistent with the analytical predictions. The propagation loss is primarily due to ohmic loss, caused by the finite electrical conductivity of the photoexcited region. Given that the frequency of transverse electric modes is up-converted at the temporal boundary, our findings suggest that the direction of frequency conversion (upward or downward) can be controlled by manipulating the incident polarization. The polarization-dependent frequency conversion in waveguides holds significant potential for applications in devices designed for the interconversion of terahertz signals across various frequency channels. This capability is instrumental in the development of frequency-division-multiplexed terahertz wave communication systems, thereby enabling high data transfer rates.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency down-conversion of terahertz waves at optically induced temporal boundaries in GaAs waveguides\",\"authors\":\"Keisuke Takano, Satoko Uchiyama, Shintaro Nagase, Yuka Tsuchimoto, Toshihiro Nakanishi, Yosuke Nakata, Joel Pérez-Urquizo, Julien Madéo, Keshav M. Dani, Fumiaki Miyamaru\",\"doi\":\"10.1515/nanoph-2024-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the frequency down-conversion of terahertz waves is analytically and experimentally demonstrated at the temporal boundaries within a GaAs waveguide. The temporal boundary is established by photoexciting the top surface of the waveguide, thereby instantaneously increasing its electrical conductivity. This photoexcited waveguide supports a transverse electromagnetic (TEM) mode with a frequency lower than those of the transverse magnetic (TM) modes present in the original waveguide. At the temporal boundary, the incident TM mode couples with the TEM mode, resulting in frequency down-conversion. Subtracting the propagation loss from the frequency-converted components indicates that the frequency conversion occurs with an efficiency consistent with the analytical predictions. The propagation loss is primarily due to ohmic loss, caused by the finite electrical conductivity of the photoexcited region. Given that the frequency of transverse electric modes is up-converted at the temporal boundary, our findings suggest that the direction of frequency conversion (upward or downward) can be controlled by manipulating the incident polarization. The polarization-dependent frequency conversion in waveguides holds significant potential for applications in devices designed for the interconversion of terahertz signals across various frequency channels. This capability is instrumental in the development of frequency-division-multiplexed terahertz wave communication systems, thereby enabling high data transfer rates.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0010\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0010","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过分析和实验证明了太赫兹波在砷化镓波导内时间边界的频率下变频。时间边界是通过光激发波导的顶面而建立的,从而瞬间提高了波导的导电性。这种光激发波导支持一种横向电磁(TEM)模式,其频率低于原始波导中的横向磁(TM)模式。在时间边界,入射的 TM 模式与 TEM 模式耦合,导致频率下变频。从频率转换成分中减去传播损耗表明,频率转换的效率与分析预测一致。传播损耗主要是由于光激发区域的有限导电性造成的欧姆损耗。鉴于横向电模式的频率在时间边界处向上转换,我们的研究结果表明,频率转换的方向(向上或向下)可以通过操纵入射极化来控制。波导中与偏振相关的频率转换具有巨大的应用潜力,可应用于设计用于在不同频率通道间相互转换太赫兹信号的设备中。这种能力有助于开发频分复用太赫兹波通信系统,从而实现高数据传输速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency down-conversion of terahertz waves at optically induced temporal boundaries in GaAs waveguides
In this study, the frequency down-conversion of terahertz waves is analytically and experimentally demonstrated at the temporal boundaries within a GaAs waveguide. The temporal boundary is established by photoexciting the top surface of the waveguide, thereby instantaneously increasing its electrical conductivity. This photoexcited waveguide supports a transverse electromagnetic (TEM) mode with a frequency lower than those of the transverse magnetic (TM) modes present in the original waveguide. At the temporal boundary, the incident TM mode couples with the TEM mode, resulting in frequency down-conversion. Subtracting the propagation loss from the frequency-converted components indicates that the frequency conversion occurs with an efficiency consistent with the analytical predictions. The propagation loss is primarily due to ohmic loss, caused by the finite electrical conductivity of the photoexcited region. Given that the frequency of transverse electric modes is up-converted at the temporal boundary, our findings suggest that the direction of frequency conversion (upward or downward) can be controlled by manipulating the incident polarization. The polarization-dependent frequency conversion in waveguides holds significant potential for applications in devices designed for the interconversion of terahertz signals across various frequency channels. This capability is instrumental in the development of frequency-division-multiplexed terahertz wave communication systems, thereby enabling high data transfer rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.30
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
Tunable single-photon emitters in 2D materials Shape unrestricted topological corner state based on Kekulé modulation and enhanced nonlinear harmonic generation Quasi-BICs enhanced second harmonic generation from WSe2 monolayer Tunable third harmonic generation based on high-Q polarization-controlled hybrid phase-change metasurface Symmetry-breaking-induced off-resonance second-harmonic generation enhancement in asymmetric plasmonic nanoparticle dimers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1