首页 > 最新文献

全部最新文献

英文 中文
IF:
Therapeutic potential of exercise-hormone irisin in Alzheimer's disease. 运动激素鸢尾素对阿尔茨海默病的治疗潜力。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00098
Eunhee Kim, Rudolph E Tanzi, Se Hoon Choi

Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.

摘要:鸢尾素是一种肌动素,由膜蛋白纤连蛋白Ⅲ型结构域含蛋白5(FNDC5)在体育锻炼时裂解生成。研究表明,鸢尾素/FNDC5 对阿尔茨海默病(老年人最常见的痴呆症)具有神经保护功能,在阿尔茨海默病的细胞培养或动物模型中,鸢尾素/FNDC5 可改善认知功能,减少淀粉样蛋白-β 和 tau 病变以及神经炎症。尽管目前和正在进行的有关鸢尾素/FNDC5的研究显示出了良好的效果,但仍需要进一步的机理研究来阐明其作为缓解阿尔茨海默病的有意义的治疗靶点的潜力。我们最近发现,鸢尾素治疗可通过提高星形胶质细胞分泌的淀粉样蛋白-β降解酶neprilysin的活性/水平来减少淀粉样蛋白-β的病理变化。在此,我们概述了鸢尾素/FNDC5对阿尔茨海默病的保护作用和机制。
{"title":"Therapeutic potential of exercise-hormone irisin in Alzheimer's disease.","authors":"Eunhee Kim, Rudolph E Tanzi, Se Hoon Choi","doi":"10.4103/NRR.NRR-D-24-00098","DOIUrl":"10.4103/NRR.NRR-D-24-00098","url":null,"abstract":"<p><p>Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. 炎症体与创伤性脑损伤、慢性创伤性脑病和阿尔茨海默病有关。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00107
Gabriela Seplovich, Yazan Bouchi, Juan Pablo de Rivero Vaccari, Jennifer C Munoz Pareja, Andrew Reisner, Laura Blackwell, Yehia Mechref, Kevin K Wang, J Adrian Tyndall, Binu Tharakan, Firas Kobeissy

Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.

创伤性脑损伤、慢性创伤性脑病和阿尔茨海默病是三种截然不同的神经系统疾病,它们的共同病理生理机制都涉及神经炎症。神经炎症的后遗症之一是 tau 蛋白病理性过度磷酸化,这是一种内源性微管相关蛋白,可保护神经元细胞骨架的完整性。Tau 蛋白过度磷酸化会导致蛋白质错误折叠,随后 Tau 蛋白缠结累积形成神经毒性聚集体。这些错误折叠的蛋白质是创伤性脑损伤、慢性创伤性脑病和阿尔茨海默病的特征,可导致下游神经炎症过程,包括炎性体复合体的组装和激活。炎症小体指的是一系列多聚蛋白单元,它们在激活后会释放一连串信号分子,导致卡巴酶诱导的细胞死亡和白细胞介素-1β细胞因子介导的炎症。一种特殊的炎性体--NOD 样受体蛋白 3--被认为是 tau 磷酸化的关键调节因子,有研究表明,NOD 样受体蛋白 3 的长期激活是病理 tau 累积和扩散的诱因。本综述首先介绍了创伤性脑损伤、慢性创伤性脑病和阿尔茨海默病的流行病学和病理生理学。接下来,我们强调神经炎症是压倒一切的主题,并讨论了 NOD 样受体蛋白 3 炎性体在形成 tau 沉积物中的作用,以及这种 tau 病理实体如何在大脑中扩散。然后,我们提出了一个新的框架,将创伤性脑损伤、慢性创伤性脑病和阿尔茨海默病作为炎性体依赖性病症联系起来,这些病症在时间上具有连续性。最后,我们讨论了可能拦截这一途径并最终最大限度地减少长期神经功能衰退的潜在治疗目标。
{"title":"Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease.","authors":"Gabriela Seplovich, Yazan Bouchi, Juan Pablo de Rivero Vaccari, Jennifer C Munoz Pareja, Andrew Reisner, Laura Blackwell, Yehia Mechref, Kevin K Wang, J Adrian Tyndall, Binu Tharakan, Firas Kobeissy","doi":"10.4103/NRR.NRR-D-24-00107","DOIUrl":"10.4103/NRR.NRR-D-24-00107","url":null,"abstract":"<p><p>Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. m6A 修饰在神经干细胞增殖、分化和自我更新中的复杂作用以及对记忆和神经退行性疾病的影响。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-06-03 DOI: 10.4103/NRR.NRR-D-23-01872
Yanxi Li, Jing Xue, Yuejia Ma, Ke Ye, Xue Zhao, Fangliang Ge, Feifei Zheng, Lulu Liu, Xu Gao, Dayong Wang, Qing Xia

N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.

摘要:N6-甲基腺苷(m6A)是真核细胞中最普遍和最保守的RNA修饰,几乎深刻影响着mRNA代谢的所有方面。mRNA在神经干细胞的形成和神经再生中发挥着关键作用,它高度集中并积极参与这些过程。m6A 修饰水平和相关酶蛋白表达水平的变化可导致神经功能紊乱,并诱发神经系统疾病。此外,神经干细胞的增殖和分化以及神经再生与记忆功能和神经退行性疾病密切相关。本文全面综述了 m6A 在神经干细胞增殖、分化和自我更新中的作用及其在记忆和神经退行性疾病中的影响。这些观察到的矛盾可能源于 m6A 的时间特异性及其在不同发育阶段对神经干细胞的不同影响。同样,m6A 对不同类型记忆的不同影响可能是由于特定脑区参与了记忆的形成和回忆。不同神经退行性疾病(尤其是阿尔茨海默病和帕金森病)模型中 m6A 水平的不一致性表明,这些差异与受影响脑区的变化有关。值得注意的是,与正常帕金森病模型相比,在暴露于锰的帕金森病模型中观察到的 m6A 水平的相反变化进一步强调了 m6A 在神经退行性过程中作用的复杂性。m6A在神经干细胞增殖、分化和自我更新中的作用及其在记忆和神经退行性疾病中的影响似乎相互矛盾。这些矛盾可能归因于 m6A 的时间特异性及其对不同脑区和不同环境的不同影响。
{"title":"The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases.","authors":"Yanxi Li, Jing Xue, Yuejia Ma, Ke Ye, Xue Zhao, Fangliang Ge, Feifei Zheng, Lulu Liu, Xu Gao, Dayong Wang, Qing Xia","doi":"10.4103/NRR.NRR-D-23-01872","DOIUrl":"10.4103/NRR.NRR-D-23-01872","url":null,"abstract":"<p><p>N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential mechanism and clinical application value of remote ischemic conditioning in stroke. 脑卒中远程缺血调理的潜在机制和临床应用价值。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-06-03 DOI: 10.4103/NRR.NRR-D-23-01800
Yajun Zhu, Xiaoguo Li, Xingwei Lei, Liuyang Tang, Daochen Wen, Bo Zeng, Xiaofeng Zhang, Zichao Huang, Zongduo Guo

Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.

摘要:一些研究证实了远端缺血调理对脑卒中的神经保护作用。尽管大量动物研究表明,远端缺血调理的神经保护作用可能与神经炎症、细胞免疫、细胞凋亡和自噬有关,但其确切的分子机制尚不清楚。本综述总结了不同类型的远程缺血调理方法在动物和临床研究中的现状,并分析了它们在神经保护机制和信号通路方面的共性和差异。远程缺血调理因其简便、无创、安全和患者耐受性强而成为改善脑卒中诱发脑损伤的潜在治疗方法。不同形式的远程缺血调理表现出不同的干预模式、时机和应用范围。从机理上讲,远程缺血调理可通过激活 Notch1/磷脂酰肌醇 3- 激酶/Akt 信号通路、改善脑灌注、抑制神经炎症、抑制细胞凋亡、激活自噬和促进神经再生来发挥神经保护作用。虽然远程缺血调理在改善中风预后方面已显示出潜力,但其临床转化尚未完全实现。
{"title":"The potential mechanism and clinical application value of remote ischemic conditioning in stroke.","authors":"Yajun Zhu, Xiaoguo Li, Xingwei Lei, Liuyang Tang, Daochen Wen, Bo Zeng, Xiaofeng Zhang, Zichao Huang, Zongduo Guo","doi":"10.4103/NRR.NRR-D-23-01800","DOIUrl":"10.4103/NRR.NRR-D-23-01800","url":null,"abstract":"<p><p>Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell and spatial omics: exploring hypothalamic heterogeneity. 单细胞和空间 omics:探索下丘脑的异质性。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00231
Muhammad Junaid, Eun Jeong Lee, Su Bin Lim

Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.

摘要:阐明下丘脑中复杂的动态细胞组织对于了解其在协调身体基本功能中的作用至关重要。在过去十年中,单细胞和空间全息技术得到了长足发展,克服了捕获和分析单个细胞的最初技术挑战。现在,这些高通量全息技术为理解整个下丘脑转录多样性和细胞类型特征的复杂时空模式提供了难得的机会。目前的单细胞和单核 RNA 测序方法可通过探索下丘脑各亚区域的不同表型来全面量化基因表达。然而,单细胞/单核 RNA 测序需要从组织中分离出细胞/核,有可能导致神经元网络空间信息的丢失。空间转录组学方法绕过了细胞分离,可以通过其成像和测序技术阐明神经网络错综复杂的空间组织。在这篇综述中,我们将重点介绍单细胞和空间转录组学在探索下丘脑细胞类型复杂的分子遗传多样性方面的应用价值。
{"title":"Single-cell and spatial omics: exploring hypothalamic heterogeneity.","authors":"Muhammad Junaid, Eun Jeong Lee, Su Bin Lim","doi":"10.4103/NRR.NRR-D-24-00231","DOIUrl":"10.4103/NRR.NRR-D-24-00231","url":null,"abstract":"<p><p>Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphodiesterase 9 localization in cytoplasm and nucleus: the gateway to selective targeting in neuroprotection? 磷酸二酯酶 9 在细胞质和细胞核中的定位:神经保护中选择性靶向的途径?
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00373
Giovanni Ribaudo, Matteo Giannangeli, Margrate Anyanwu, Alessandra Gianoncelli
{"title":"Phosphodiesterase 9 localization in cytoplasm and nucleus: the gateway to selective targeting in neuroprotection?","authors":"Giovanni Ribaudo, Matteo Giannangeli, Margrate Anyanwu, Alessandra Gianoncelli","doi":"10.4103/NRR.NRR-D-24-00373","DOIUrl":"10.4103/NRR.NRR-D-24-00373","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging-induced memory loss due to decreased N1-acetyl-5-methoxykynuramine, a melatonin metabolite, in the hippocampus: a potential prophylactic agent for dementia. 海马中褪黑素代谢产物 N1-acetyl-5-methoxykynuramine 减少导致的衰老性失忆:一种潜在的痴呆症预防药物。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00379
Kazuki Watanabe, Atsuhiko Hattori
{"title":"Aging-induced memory loss due to decreased N1-acetyl-5-methoxykynuramine, a melatonin metabolite, in the hippocampus: a potential prophylactic agent for dementia.","authors":"Kazuki Watanabe, Atsuhiko Hattori","doi":"10.4103/NRR.NRR-D-24-00379","DOIUrl":"10.4103/NRR.NRR-D-24-00379","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights from an academic endeavor into central nervous system drug discovery. 中枢神经系统药物研发学术研究的启示。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00340
Lieve van Veggel, An M Voets, Tim Vanmierlo, Rudy Schreiber
{"title":"Insights from an academic endeavor into central nervous system drug discovery.","authors":"Lieve van Veggel, An M Voets, Tim Vanmierlo, Rudy Schreiber","doi":"10.4103/NRR.NRR-D-24-00340","DOIUrl":"10.4103/NRR.NRR-D-24-00340","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking hypoglycemia-associated brain microvascular dysfunction: critical insights from proteomic analysis. 解读低血糖相关的脑微血管功能障碍:蛋白质组分析的重要启示。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00217
Siva S V P Sakamuri, Anil Sakamuri
{"title":"Unlocking hypoglycemia-associated brain microvascular dysfunction: critical insights from proteomic analysis.","authors":"Siva S V P Sakamuri, Anil Sakamuri","doi":"10.4103/NRR.NRR-D-24-00217","DOIUrl":"10.4103/NRR.NRR-D-24-00217","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing therapeutic potential of induced pluripotent stem cell-derived endothelial cells for remyelination in the central nervous system. 利用诱导多能干细胞衍生内皮细胞的治疗潜力,促进中枢神经系统的髓鞘再形成。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00209
Dan Ma, Nona Pop
{"title":"Harnessing therapeutic potential of induced pluripotent stem cell-derived endothelial cells for remyelination in the central nervous system.","authors":"Dan Ma, Nona Pop","doi":"10.4103/NRR.NRR-D-24-00209","DOIUrl":"10.4103/NRR.NRR-D-24-00209","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1