首页 > 最新文献

医学最新文献

英文 中文
IF:
Nucleoside modified mRNA-lipid nanoparticles as a new delivery platform for the repair of the injured spinal cord. 核苷修饰的 mRNA 脂质纳米粒子作为修复损伤脊髓的新传输平台。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-23-01231
Krisztián Pajer, Tamás Bellák, Antal Nógrádi
{"title":"Nucleoside modified mRNA-lipid nanoparticles as a new delivery platform for the repair of the injured spinal cord.","authors":"Krisztián Pajer, Tamás Bellák, Antal Nógrádi","doi":"10.4103/NRR.NRR-D-23-01231","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01231","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Zika virus non-structural protein mutations on hippocampal damage. 寨卡病毒非结构蛋白突变对海马损伤的影响
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00493
Larissa M G Cassiano, Roney S Coimbra
{"title":"Impact of Zika virus non-structural protein mutations on hippocampal damage.","authors":"Larissa M G Cassiano, Roney S Coimbra","doi":"10.4103/NRR.NRR-D-24-00493","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00493","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. 利用工程细胞外囊泡作为输送载体治疗缺血性中风:线粒体输送的特殊前景。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00243
Jiali Chen, Yiyang Li, Xingping Quan, Jinfen Chen, Yan Han, Li Yang, Manfei Zhou, Greta Seng Peng Mok, Ruibing Wang, Yonghua Zhao

Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.

缺血性中风是全球死亡的次要原因,给社会造成了巨大的医疗和经济负担。细胞外囊泡是天然的纳米药物载体,在体内具有良好的生物相容性,在治疗缺血性中风方面具有显著优势。然而,细胞外囊泡的分布不确定和快速清除阻碍了它们的递送效率。利用膜装饰或将治疗货物封装在细胞外囊泡中,可大大提高其输送效率。此外,先前的研究表明,大尺寸细胞外囊泡的一个子集--微囊泡可以将线粒体运送到邻近细胞,从而帮助恢复缺血性中风后的线粒体功能。小型细胞外囊泡也已证明有能力转运线粒体成分,如蛋白质或脱氧核糖核酸,或其子成分,用于基于细胞外囊泡的缺血性中风治疗。在这篇综述中,我们对细胞外囊泡的分离技术进行了比较分析,并概述了目前主流的细胞外囊泡修饰方法。鉴于缺血性中风治疗的复杂性,我们还划分了适合治疗过程不同方面的各种细胞外囊泡修饰方法。此外,鉴于人们对线粒体输送的兴趣日渐浓厚,我们深入研究了通过小型细胞外囊泡和微囊泡输送线粒体组分或完整线粒体的可行性和现有研究成果,为缺血性中风治疗提供了一个全新的视角。
{"title":"Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery.","authors":"Jiali Chen, Yiyang Li, Xingping Quan, Jinfen Chen, Yan Han, Li Yang, Manfei Zhou, Greta Seng Peng Mok, Ruibing Wang, Yonghua Zhao","doi":"10.4103/NRR.NRR-D-24-00243","DOIUrl":"10.4103/NRR.NRR-D-24-00243","url":null,"abstract":"<p><p>Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interconnections between diabetic corneal neuropathy and diabetic retinopathy: diagnostic and therapeutic implications. 糖尿病角膜神经病变与糖尿病视网膜病变之间的相互联系:诊断和治疗意义。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-09-20 DOI: 10.4103/NRR.NRR-D-24-00509
Mingyi Yu, Faith Teo En Ning, Chang Liu, Yu-Chi Liu

Diabetic corneal neuropathy and diabetic retinopathy are ocular complications occurring in the context of diabetes mellitus. Diabetic corneal neuropathy refers to the progressive damage of corneal nerves. Diabetic retinopathy has traditionally been considered as damage to the retinal microvasculature. However, growing evidence suggests that diabetic retinopathy is a complex neurovascular disorder resulting from dysfunction of the neurovascular unit, which includes both the retinal vascular structures and neural tissues. Diabetic retinopathy is one of the leading causes of blindness and is frequently screened for as part of diabetic ocular screening. However, diabetic corneal neuropathy is commonly overlooked and underdiagnosed, leading to severe ocular surface impairment. Several studies have found that these two conditions tend to occur together, and they share similarities in their pathogenesis pathways, being triggered by a status of chronic hyperglycemia. This review aims to discuss the interconnection between diabetic corneal neuropathy and diabetic retinopathy, whether diabetic corneal neuropathy precedes diabetic retinopathy, as well as the relation between the stage of diabetic retinopathy and the severity of corneal neuropathy. We also endeavor to explore the relevance of a corneal screening in diabetic eyes and the possibility of using corneal nerve measurements to monitor the progression of diabetic retinopathy.

糖尿病角膜神经病变和糖尿病视网膜病变是糖尿病引起的眼部并发症。糖尿病角膜神经病变是指角膜神经逐渐受损。糖尿病视网膜病变传统上被认为是视网膜微血管的损伤。然而,越来越多的证据表明,糖尿病视网膜病变是一种复杂的神经血管疾病,是由神经血管单元(包括视网膜血管结构和神经组织)功能障碍引起的。糖尿病视网膜病变是导致失明的主要原因之一,经常作为糖尿病眼底筛查的一部分进行筛查。然而,糖尿病角膜神经病变通常被忽视和诊断不足,导致严重的眼表损害。多项研究发现,这两种病症往往同时发生,它们的发病机制相似,都是由慢性高血糖状态引发的。本综述旨在讨论糖尿病角膜神经病变与糖尿病视网膜病变之间的相互联系,糖尿病角膜神经病变是否先于糖尿病视网膜病变,以及糖尿病视网膜病变的阶段与角膜神经病变严重程度之间的关系。我们还致力于探索糖尿病眼角膜筛查的相关性,以及利用角膜神经测量来监测糖尿病视网膜病变进展的可能性。
{"title":"Interconnections between diabetic corneal neuropathy and diabetic retinopathy: diagnostic and therapeutic implications.","authors":"Mingyi Yu, Faith Teo En Ning, Chang Liu, Yu-Chi Liu","doi":"10.4103/NRR.NRR-D-24-00509","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00509","url":null,"abstract":"<p><p>Diabetic corneal neuropathy and diabetic retinopathy are ocular complications occurring in the context of diabetes mellitus. Diabetic corneal neuropathy refers to the progressive damage of corneal nerves. Diabetic retinopathy has traditionally been considered as damage to the retinal microvasculature. However, growing evidence suggests that diabetic retinopathy is a complex neurovascular disorder resulting from dysfunction of the neurovascular unit, which includes both the retinal vascular structures and neural tissues. Diabetic retinopathy is one of the leading causes of blindness and is frequently screened for as part of diabetic ocular screening. However, diabetic corneal neuropathy is commonly overlooked and underdiagnosed, leading to severe ocular surface impairment. Several studies have found that these two conditions tend to occur together, and they share similarities in their pathogenesis pathways, being triggered by a status of chronic hyperglycemia. This review aims to discuss the interconnection between diabetic corneal neuropathy and diabetic retinopathy, whether diabetic corneal neuropathy precedes diabetic retinopathy, as well as the relation between the stage of diabetic retinopathy and the severity of corneal neuropathy. We also endeavor to explore the relevance of a corneal screening in diabetic eyes and the possibility of using corneal nerve measurements to monitor the progression of diabetic retinopathy.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases. 储存时间会影响神经退行性疾病血浆生物标记物的水平和诊断效果。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-04-16 DOI: 10.4103/NRR.NRR-D-23-01983
Lifang Zhao, Mingkai Zhang, Qimeng Li, Xuemin Wang, Jie Lu, Ying Han, Yanning Cai

JOURNAL/nrgr/04.03/01300535-202508000-00027/figure1/v/2024-09-30T120553Z/r/image-tiff Several promising plasma biomarker proteins, such as amyloid-β (Aβ), tau, neurofilament light chain, and glial fibrillary acidic protein, are widely used for the diagnosis of neurodegenerative diseases. However, little is known about the long-term stability of these biomarker proteins in plasma samples stored at -80°C. We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort. Plasma samples from 229 cognitively unimpaired individuals, encompassing healthy controls and those experiencing subjective cognitive decline, as well as 99 patients with cognitive impairment, comprising those with mild cognitive impairment and dementia, were acquired from the Sino Longitudinal Study on Cognitive Decline project. These samples were stored at -80°C for up to 6 years before being used in this study. Our results showed that plasma levels of Aβ42, Aβ40, neurofilament light chain, and glial fibrillary acidic protein were not significantly correlated with sample storage time. However, the level of total tau showed a negative correlation with sample storage time. Notably, in individuals without cognitive impairment, plasma levels of total protein and tau phosphorylated protein threonine 181 (p-tau181)also showed a negative correlation with sample storage time. This was not observed in individuals with cognitive impairment. Consequently, we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time. Therefore, caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases, such as Alzheimer's disease. Furthermore, in cohort studies, it is important to consider the impact of storage time on the overall results.

JOURNAL/nrgr/04.03/01300535-202508000-00027/figure1/v/2024-09-30T120553Z/r/image-tiff淀粉样β(Aβ)、tau、神经丝蛋白轻链和胶质纤维酸性蛋白等几种有前景的血浆生物标记蛋白被广泛用于神经退行性疾病的诊断。然而,人们对这些生物标记蛋白在-80°C储存的血浆样本中的长期稳定性知之甚少。我们的目的是利用一个大型群组来探讨储存时间会如何影响这些生物标记物的诊断准确性。我们从 "中国认知功能减退纵向研究 "项目中采集了 229 名认知功能未受损者(包括健康对照组和主观认知功能减退者)和 99 名认知功能受损患者(包括轻度认知功能受损者和痴呆症患者)的血浆样本。这些样本在零下 80 摄氏度的环境中保存了长达 6 年之久,然后才被用于本研究。结果表明,血浆中 Aβ42、Aβ40、神经丝轻链和胶质纤维酸性蛋白的水平与样本的储存时间无明显相关性。但是,总 tau 水平与样本储存时间呈负相关。值得注意的是,在没有认知障碍的个体中,血浆中总蛋白和 tau 磷酸化蛋白苏氨酸 181(p-tau181)的水平也与样本储存时间呈负相关。而在认知障碍患者中却观察不到这种情况。因此,我们推测血浆 p-tau181 和 p-tau181 与总 tau 比值的诊断准确性可能会受到样本储存时间的影响。因此,在使用这些血浆生物标记物鉴定阿尔茨海默病等神经退行性疾病时应谨慎。此外,在队列研究中,考虑储存时间对总体结果的影响也很重要。
{"title":"Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases.","authors":"Lifang Zhao, Mingkai Zhang, Qimeng Li, Xuemin Wang, Jie Lu, Ying Han, Yanning Cai","doi":"10.4103/NRR.NRR-D-23-01983","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01983","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202508000-00027/figure1/v/2024-09-30T120553Z/r/image-tiff Several promising plasma biomarker proteins, such as amyloid-β (Aβ), tau, neurofilament light chain, and glial fibrillary acidic protein, are widely used for the diagnosis of neurodegenerative diseases. However, little is known about the long-term stability of these biomarker proteins in plasma samples stored at -80°C. We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort. Plasma samples from 229 cognitively unimpaired individuals, encompassing healthy controls and those experiencing subjective cognitive decline, as well as 99 patients with cognitive impairment, comprising those with mild cognitive impairment and dementia, were acquired from the Sino Longitudinal Study on Cognitive Decline project. These samples were stored at -80°C for up to 6 years before being used in this study. Our results showed that plasma levels of Aβ42, Aβ40, neurofilament light chain, and glial fibrillary acidic protein were not significantly correlated with sample storage time. However, the level of total tau showed a negative correlation with sample storage time. Notably, in individuals without cognitive impairment, plasma levels of total protein and tau phosphorylated protein threonine 181 (p-tau181)also showed a negative correlation with sample storage time. This was not observed in individuals with cognitive impairment. Consequently, we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time. Therefore, caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases, such as Alzheimer's disease. Furthermore, in cohort studies, it is important to consider the impact of storage time on the overall results.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diabetic peripheral neuropathy and neuromodulation techniques: a systematic review of progress and prospects. 糖尿病周围神经病变与神经调控技术:进展与前景系统回顾。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00270
Rahul Mittal, Keelin McKenna, Grant Keith, Evan McKenna, Joana R N Lemos, Jeenu Mittal, Khemraj Hirani

Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition. Diabetic peripheral neuropathy, a common complication of diabetes, is characterized by nerve damage due to high blood sugar levels that lead to symptoms, such as pain, tingling, and numbness, primarily in the hands and feet. The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy, while also examining recent developments in this domain. The investigation encompassed an array of neuromodulation methods, including frequency rhythmic electrical modulated systems, dorsal root ganglion stimulation, and spinal cord stimulation. This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy. Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments. Through these efforts, we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.

针对糖尿病周围神经病变的神经调控是治疗与这种病症相关的慢性疼痛的一个重要领域。糖尿病周围神经病变是糖尿病的一种常见并发症,其特点是高血糖导致神经损伤,从而引起疼痛、刺痛和麻木等症状,主要发生在手脚部位。本系统性综述旨在评估神经调节技术作为糖尿病周围神经病变患者潜在治疗干预措施的疗效,同时考察该领域的最新进展。调查涵盖了一系列神经调节方法,包括频率节律电调制系统、背根神经节刺激和脊髓刺激。本系统综述表明,神经调控技术可能有助于治疗糖尿病周围神经病变。了解这些疗法的优势将使医生和其他医疗服务提供者能够为标准药物治疗无效的患者提供更多选择。通过这些努力,我们可以改善糖尿病神经病变相关并发症患者的生活质量并提高其功能能力。
{"title":"Diabetic peripheral neuropathy and neuromodulation techniques: a systematic review of progress and prospects.","authors":"Rahul Mittal, Keelin McKenna, Grant Keith, Evan McKenna, Joana R N Lemos, Jeenu Mittal, Khemraj Hirani","doi":"10.4103/NRR.NRR-D-24-00270","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00270","url":null,"abstract":"<p><p>Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition. Diabetic peripheral neuropathy, a common complication of diabetes, is characterized by nerve damage due to high blood sugar levels that lead to symptoms, such as pain, tingling, and numbness, primarily in the hands and feet. The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy, while also examining recent developments in this domain. The investigation encompassed an array of neuromodulation methods, including frequency rhythmic electrical modulated systems, dorsal root ganglion stimulation, and spinal cord stimulation. This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy. Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments. Through these efforts, we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms behind elevated serum levels of plasminogen activator inhibitor-1 in frontotemporal lobar degeneration. 额颞叶变性患者血清中纤溶酶原激活物抑制剂-1水平升高的机制。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00335
Francesco Angelucci, Jakub Hort
{"title":"Mechanisms behind elevated serum levels of plasminogen activator inhibitor-1 in frontotemporal lobar degeneration.","authors":"Francesco Angelucci, Jakub Hort","doi":"10.4103/NRR.NRR-D-24-00335","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00335","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the mechanobiology of microglia in traumatic brain injury with advanced microsystems. 利用先进的微型系统解密创伤性脑损伤中的小胶质细胞机械生物学。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00371
Anthony Procès, Sylvain Gabriele
{"title":"Deciphering the mechanobiology of microglia in traumatic brain injury with advanced microsystems.","authors":"Anthony Procès, Sylvain Gabriele","doi":"10.4103/NRR.NRR-D-24-00371","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00371","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. 与衰老相关的神经退行性疾病中的神经元调控细胞死亡:关键途径和治疗潜力。
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00025
Run Song, Shiyi Yin, Jiannan Wu, Junqiang Yan

Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.

调节性细胞死亡(如凋亡、坏死、热凋亡、自噬、杯凋亡、铁凋亡、二硫化碳凋亡)涉及复杂的信号通路和分子效应器,已被证明是调节神经元衰老和死亡的重要调节机制。然而,过度激活被调控的细胞死亡可能会导致衰老相关疾病的进展。这篇综述总结了最近在了解衰老相关疾病中七种形式的调控细胞死亡(RCD)方面取得的进展。值得注意的是,新发现的铁凋亡和杯凋亡与认知障碍和神经退行性疾病的风险有关。这些形式的细胞死亡会促进炎症、氧化应激和病理性蛋白质聚集,从而加剧疾病的进展。综述还概述了这些RCD形式之间的关键信号通路和相互协作机制,重点关注铁跃迁、杯跃迁和二硫化物跃迁。例如,FDX1 通过调节铜离子的价态和二氢脂酰胺 S-乙酰转移酶(DLAT)的聚集直接诱导杯突,而铜介导谷胱甘肽过氧化物酶 4(GPX4)的降解,从而提高了铁变态反应的敏感性。此外,抑制 Xc- 转运系统以防止铁猝灭可增加二硫化物的形成并改变 NADP+/NADPH 的比例,从而使铁猝灭过渡到二硫猝灭。这些见解有助于发现这些新型 RCD 形式之间的潜在联系,并将它们与传统的 RCD 机制区分开来。总之,确定各种 RCD 通路之间的关键靶点及其交叉点可能有助于开发特定的生物标记物来逆转衰老时钟和治疗与年龄相关的神经退行性疾病。
{"title":"Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials.","authors":"Run Song, Shiyi Yin, Jiannan Wu, Junqiang Yan","doi":"10.4103/NRR.NRR-D-24-00025","DOIUrl":"10.4103/NRR.NRR-D-24-00025","url":null,"abstract":"<p><p>Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurocircuit regeneration by extracellular matrix reprogramming. 通过细胞外基质重编程实现神经回路再生
IF 5.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00506
Shengzhang Su, Ian N Levasseur, Kimberly M Alonge
{"title":"Neurocircuit regeneration by extracellular matrix reprogramming.","authors":"Shengzhang Su, Ian N Levasseur, Kimberly M Alonge","doi":"10.4103/NRR.NRR-D-24-00506","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00506","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Chem. Neurosci. ACS Infect. Dis. ACS Med. Chem. Lett. Chem. Res. Toxicol. J. Med. Chem. Mol. Pharmaceutics Toxicol. Res. Acta Physiol. ACTA PSYCHIAT SCAND Addiction Aliment. Pharmacol. Ther. Allergy AM J TRANSPLANT Ann. Clin. Transl. Neurol. Ann. Neurol. Arch. Pharm. ARTHRITIS RHEUMATOL AUTISM RES Br. J. Haematol. BRIT J SURG CA-CANCER J CLIN CANCER-AM CANCER SOC CANCER MED-US CHEM BIOL DRUG DES ChemMedChem Clin. Transl. Immunol. Clin. Pharmacol. Ther. CNS Neurosci. Ther. DIABETES OBES METAB DIGEST ENDOSC Drug Test. Anal. EUR J HEART FAIL Eur. J. Immunol. Glia Hepatology Immunol. Rev. Int. J. Cancer J. Bone Miner. Res. J CACHEXIA SARCOPENI J CHILD PSYCHOL PSYC J. Diabetes J DIABETES INVEST J INTERN MED J. Pineal Res. J INT AIDS SOC Med. Res. Rev. MOVEMENT DISORD Obesity OBES REV PEDIATR OBES Pigm. Cell Melanoma Res. STEM CELLS J. Pathol. Appetite BIOORGAN MED CHEM BIOORG MED CHEM LETT Chem. Biol. Interact. Cytokine DNA Repair Drug Discovery Today Eur. J. Med. Chem. Forensic Chem. J ACAD NUTR DIET Neurochem. Int. Pharmacol. Ther. Chemosens. Percept. J. Mol. Neurosci. J NAT MED-TOKYO J PHARM INNOV Med. Chem. Res. Neurochem. Res. ACTA OTO-LARYNGOL ACTA OTORHINOLARYNGO ACTA PAUL ENFERM 第二军医大学学报 中医药学报 ACTA ANAESTH SCAND ACTA NEUROPATHOL COM ACTA OPHTHALMOL ACTA ORTHOP ACTA DIABETOL AAPS PHARMSCITECH ACTA PARASITOL ACTA CHIR BELG Acta Neurol. Scand. Acta Pharmacol. Sin. ACTA DERM-VENEREOL ACTA CARDIOL SIN ACTA CYTOL ACTA CARDIOL ACTA CHIR ORTHOP TR ACTA HAEMATOL-BASEL ACTA OBSTET GYN SCAN ACTA CIR BRAS Acta Neuropathol. ACTA MED OKAYAMA ACTA ORTHOP BELG ACTA NEUROBIOL EXP ACTA PHARMACEUT ACTA NEUROL BELG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1