首页 > 最新文献

材料科学最新文献

英文 中文
IF:
Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena 多晶信息学:通过揭示复杂现象推动材料科学发展的方法学
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2396272
Noritaka Usami, Kentaro Kutsukake, Takuto Kojima, Hiroaki Kudo, Tatsuya Yokoi, Yutaka Ohno
Multicrystalline materials play a crucial role in our society. However, their microstructure is complicated, and there is no universal approach to achieving high performance. Therefore, a methodology is necessary to answer the fundamental question of how we should design and create microstructures. ‘Multicrystalline informatics’ is an innovative approach that combines experimental, theoretical, computational, and data sciences. This approach helps us understand complex phenomena in multicrystalline materials and improve their performance. The paper covers various original research bases of multicrystalline informatics, such as the three-dimensional visualization of crystal defects in multicrystalline materials, the machine learning model for predicting crystal orientation distribution, network analysis of multicrystalline structures, computational methods using artificial neural network interatomic potentials, and so on. The integration of these research bases proves to be useful in understanding unexplained phenomena in complex multicrystalline materials. The paper also presents examples of efficient optimization of the growth process of high-quality materials with the aid of informatics, as well as prospects for extending the methodology to other materials.
多晶材料在我们的社会中发挥着至关重要的作用。然而,它们的微观结构非常复杂,没有一种通用的方法可以实现高性能。因此,我们需要一种方法来回答如何设计和创造微结构这一根本问题。多晶体信息学 "是一种结合了实验、理论、计算和数据科学的创新方法。这种方法有助于我们理解多晶材料中的复杂现象并提高其性能。论文涵盖了多晶信息学的各种原创研究基础,如多晶材料晶体缺陷的三维可视化、预测晶体取向分布的机器学习模型、多晶结构的网络分析、利用人工神经网络原子间势的计算方法等。事实证明,整合这些研究基础有助于理解复杂多晶材料中无法解释的现象。论文还介绍了借助信息学有效优化高质量材料生长过程的实例,以及将该方法扩展到其他材料的前景。
{"title":"Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena","authors":"Noritaka Usami, Kentaro Kutsukake, Takuto Kojima, Hiroaki Kudo, Tatsuya Yokoi, Yutaka Ohno","doi":"10.1080/14686996.2024.2396272","DOIUrl":"https://doi.org/10.1080/14686996.2024.2396272","url":null,"abstract":"Multicrystalline materials play a crucial role in our society. However, their microstructure is complicated, and there is no universal approach to achieving high performance. Therefore, a methodology is necessary to answer the fundamental question of how we should design and create microstructures. ‘Multicrystalline informatics’ is an innovative approach that combines experimental, theoretical, computational, and data sciences. This approach helps us understand complex phenomena in multicrystalline materials and improve their performance. The paper covers various original research bases of multicrystalline informatics, such as the three-dimensional visualization of crystal defects in multicrystalline materials, the machine learning model for predicting crystal orientation distribution, network analysis of multicrystalline structures, computational methods using artificial neural network interatomic potentials, and so on. The integration of these research bases proves to be useful in understanding unexplained phenomena in complex multicrystalline materials. The paper also presents examples of efficient optimization of the growth process of high-quality materials with the aid of informatics, as well as prospects for extending the methodology to other materials.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy 利用原子力显微镜跟踪 SIS 热塑性弹性体在拉力作用下的形态和应力分布演变情况
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2402685
Ling Gao, Haonan Liu, Xiaobin Liang, Makiko Ito, Ken Nakajima
Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene-b-isoprene-b-styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young’s modulus diagram during stretching was consistent with the stress – strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.
苯乙烯基 ABA 型三嵌段共聚物及其共混物是被广泛研究的热塑性弹性体(TPE)。要设计出具有高强度和回弹性的坚韧 TPE 材料,就必须进一步阐明拉伸样品的微观结构与宏观特性之间的关系。在此,我们应用基于原子力显微镜 (AFM) 的定量纳米力学图谱研究了聚苯乙烯-异戊二烯-苯乙烯共混物在拉伸条件下的变形行为。结果表明,在拉伸初始阶段,玻璃态聚苯乙烯(PS)畴发生变形,并形成不均匀的应力分布。当应变达到 200% 时,玻璃态 PS 结构域开始出现裂纹。拉伸过程中 JKR 杨氏模量图的峰值变化与应力-应变曲线一致。对拉伸前后颗粒的分析表明,玻璃态结构域在拉伸过程中发生了分离和重组。
{"title":"Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy","authors":"Ling Gao, Haonan Liu, Xiaobin Liang, Makiko Ito, Ken Nakajima","doi":"10.1080/14686996.2024.2402685","DOIUrl":"https://doi.org/10.1080/14686996.2024.2402685","url":null,"abstract":"Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene-<i>b</i>-isoprene-<i>b</i>-styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young’s modulus diagram during stretching was consistent with the stress – strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs 用于白光 LED 的稳定且可发出橙黄色光的富硒多晶体 α-SiAlON (Sr3Si24Al6N40:Eu2+) 荧光粉
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2396276
Mehdi Estili, Rong-Jun Xie, Kohsei Takahashi, Shiro Funahashi, Tohru S. Suzuki, Naoto Hirosaki
Nitrides and oxynitrides isostructural to α-Si3N4 (M-α-SiAlON, M = Sr, Ca, Li) possess superb thermally stable photoluminescence (PL) properties, making them reliable phosphors for high-power solid-state lighting. However, the synthesis of phase-pure Sr-α-SiAlON still remains a great challenge and has only been reported for Sr below 1.35 at.% as the large size of Sr2+ ions tends to destabilize the α-SiAlON structure. Here, we succeeded to synthesize the single-phase powders of a unique ‘Sr-rich’ polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor with three distinctive Sr/Eu luminescence sites using a solid-state remixing-reannealing process. The Sr content of this polytypoid structure exceeds those of a few previously reported structures by over 200%. The phase purity, composition, structure, and PL properties of this phosphor were investigated. A single phase can be obtained by firing the stoichiometric mixtures of all-nitride precursors at 2050°C under a 0.92 MPa N2 atmosphere. The Sr3Si24Al6N40:Eu2+ shows an intense orange-yellow emission, with the emission maximum of 590 nm and internal/external quantum efficiency of 66%/52% under 400 nm excitation. It also has a quite small thermal quenching, maintaining 93% emission intensity at 150°C. In comparison to Ca-α-SiAlON:Eu2+, this Sr counterpart shows superior quantum efficiency and thermal stability, enabling it to be an interesting orange-yellow down-conversion luminescent material for white LEDs. The experimental confirmation of the existence of such ‘Sr-rich’ SiAlON systems, in a single-phase powder form, paves the way for the design and synthesis of novel ‘Sr-rich’ SiAlON-based phosphor powders with unparalleled properties.
与 α-Si3N4(M-α-SiAlON,M = Sr、Ca、Li)结构相同的氮化物和氧化氮化物具有极佳的热稳定光致发光(PL)特性,是大功率固态照明的可靠荧光粉。然而,相纯 Sr-α-SiAlON 的合成仍然是一个巨大的挑战,目前只有关于 Sr 低于 1.35 at.% 的报道,因为大尺寸的 Sr2+ 离子往往会破坏 α-SiAlON 结构的稳定性。在这里,我们采用固态混料-退火工艺,成功合成了一种独特的 "富硒 "多晶α-SiAlON(Sr3Si24Al6N40:Eu2+)单相粉末荧光粉,这种荧光粉具有三个独特的 Sr/Eu 发光位点。这种多环状结构的硒含量比之前报道的几种结构的硒含量高出 200% 以上。研究人员对这种荧光粉的相纯度、组成、结构和聚光特性进行了研究。在 0.92 兆帕的氮气环境下,于 2050°C 煅烧全氮化前驱体的化学计量混合物,可获得单相。Sr3Si24Al6N40:Eu2+ 发出强烈的橙黄色光,发射最大值为 590 纳米,在 400 纳米激发下的内部/外部量子效率分别为 66%/52% 。它的热淬灭效应也相当小,在 150°C 时仍能保持 93% 的发射强度。与 Ca-α-SiAlON:Eu2+ 相比,这种硒对应物显示出更高的量子效率和热稳定性,使其成为一种用于白光 LED 的有趣的橙黄色向下转换发光材料。实验证实了这种单相粉末形式的 "富硒 "SiAlON 系统的存在,为设计和合成具有无与伦比特性的新型 "富硒 "SiAlON 基荧光粉铺平了道路。
{"title":"Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs","authors":"Mehdi Estili, Rong-Jun Xie, Kohsei Takahashi, Shiro Funahashi, Tohru S. Suzuki, Naoto Hirosaki","doi":"10.1080/14686996.2024.2396276","DOIUrl":"https://doi.org/10.1080/14686996.2024.2396276","url":null,"abstract":"Nitrides and oxynitrides isostructural to α-Si<sub>3</sub>N<sub>4</sub> (<i>M</i>-α-SiAlON, <i>M</i> = Sr, Ca, Li) possess superb thermally stable photoluminescence (PL) properties, making them reliable phosphors for high-power solid-state lighting. However, the synthesis of phase-pure Sr-α-SiAlON still remains a great challenge and has only been reported for Sr below 1.35 at.% as the large size of Sr<sup>2+</sup> ions tends to destabilize the α-SiAlON structure. Here, we succeeded to synthesize the single-phase powders of a unique ‘Sr-rich’ polytypoid α-SiAlON (Sr<sub>3</sub>Si<sub>24</sub>Al<sub>6</sub>N<sub>40</sub>:Eu<sup>2+</sup>) phosphor with three distinctive Sr/Eu luminescence sites using a solid-state remixing-reannealing process. The Sr content of this polytypoid structure exceeds those of a few previously reported structures by over 200%. The phase purity, composition, structure, and PL properties of this phosphor were investigated. A single phase can be obtained by firing the stoichiometric mixtures of all-nitride precursors at 2050°C under a 0.92 MPa N<sub>2</sub> atmosphere. The Sr<sub>3</sub>Si<sub>24</sub>Al<sub>6</sub>N<sub>40</sub>:Eu<sup>2+</sup> shows an intense orange-yellow emission, with the emission maximum of 590 nm and internal/external quantum efficiency of 66%/52% under 400 nm excitation. It also has a quite small thermal quenching, maintaining 93% emission intensity at 150°C. In comparison to Ca-α-SiAlON:Eu<sup>2+</sup>, this Sr counterpart shows superior quantum efficiency and thermal stability, enabling it to be an interesting orange-yellow down-conversion luminescent material for white LEDs. The experimental confirmation of the existence of such ‘Sr-rich’ SiAlON systems, in a single-phase powder form, paves the way for the design and synthesis of novel ‘Sr-rich’ SiAlON-based phosphor powders with unparalleled properties.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive data network for data-driven study of battery materials 用于电池材料数据驱动研究的综合数据网络
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2403328
Yibin Xu, Yen-Ju Wu, Huiping Li, Lei Fang, Shigenobu Hayashi, Ayako Oishi, Natsuko Shimizu, Riccarda Caputo, Pierre Villars
Data-driven material research for property prediction and material design using machine learning methods requires a large quantity, wide variety, and high-quality materials data. For battery materials, which are commonly polycrystalline, ceramics, and composites, multiscale data on substances, materials, and batteries are required. In this work, we develop a data network composed of three interlinked databases, from which we can obtain comprehensive data on substances such as crystal structures and electronic structures, data on materials such as chemical composition, structure, and properties, and data on batteries such as battery composition, operation conditions, and capacity. The data are extracted from research papers on solid electrolytes and cathode materials, selected by screening more than 330 thousand papers using natural language processing tools. Data extraction and curation are carried out by editors specialized in material science and trained in data standardization.
使用机器学习方法进行性能预测和材料设计的数据驱动型材料研究需要大量、多样和高质量的材料数据。电池材料通常是多晶体、陶瓷和复合材料,因此需要有关物质、材料和电池的多尺度数据。在这项工作中,我们开发了一个由三个相互关联的数据库组成的数据网络,从中可以获得晶体结构和电子结构等物质的综合数据,化学成分、结构和性能等材料的数据,以及电池组成、运行条件和容量等电池的数据。这些数据是从有关固体电解质和阴极材料的研究论文中提取的,使用自然语言处理工具筛选了 33 万多篇论文。数据提取和整理工作由材料科学领域的专业编辑完成,并接受过数据标准化方面的培训。
{"title":"A comprehensive data network for data-driven study of battery materials","authors":"Yibin Xu, Yen-Ju Wu, Huiping Li, Lei Fang, Shigenobu Hayashi, Ayako Oishi, Natsuko Shimizu, Riccarda Caputo, Pierre Villars","doi":"10.1080/14686996.2024.2403328","DOIUrl":"https://doi.org/10.1080/14686996.2024.2403328","url":null,"abstract":"Data-driven material research for property prediction and material design using machine learning methods requires a large quantity, wide variety, and high-quality materials data. For battery materials, which are commonly polycrystalline, ceramics, and composites, multiscale data on substances, materials, and batteries are required. In this work, we develop a data network composed of three interlinked databases, from which we can obtain comprehensive data on substances such as crystal structures and electronic structures, data on materials such as chemical composition, structure, and properties, and data on batteries such as battery composition, operation conditions, and capacity. The data are extracted from research papers on solid electrolytes and cathode materials, selected by screening more than 330 thousand papers using natural language processing tools. Data extraction and curation are carried out by editors specialized in material science and trained in data standardization.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels 在异质超细晶粒层状钢中通过晶界分层消除温度与韧性之间的矛盾
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2399880
Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo
Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.
通过温变形工艺制备了具有双峰晶粒层状(BG-L)和超细晶粒层状(UFG-L)微观结构的异种结构铁素体钢。与传统的淬火回火(QT)钢相比,BG-L 钢的机械性能有所提高。而 UFG-L 钢则在强度、延展性和韧性方面都有出色的表现。此外,从室温(RT)到液氮温度(LNT),UFG-L 钢没有出现韧性到脆性的转变(DBT),在 LNT 温度下的夏比冲击能仍然高达 314 J。液氮温度下韧性的增强可归因于晶界分层引起的裂纹-断裂机制。
{"title":"Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels","authors":"Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo","doi":"10.1080/21663831.2024.2399880","DOIUrl":"https://doi.org/10.1080/21663831.2024.2399880","url":null,"abstract":"Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework 利用自动晶格旋转框架激活多晶锆中的多重滑移系统
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2402370
Huigang Shi, Jianye Chen, Junqiang Lu, Libing Zhu, Lefu Zhang, Jiuxiao Li, Weijie Lu, Xianglong Guo
Understanding the deformation mechanism in polycrystalline metals is critical to use them in high-value high-risk applications. Here, we report an automated framework based on lattice rotation analysis for accurately identifying slip system and assessing the multiple slip activities in large data set of polycrystalline Zr, aims to statistically provide deep insight on deformation mechanism of Zr. Results show that multiple slip is the dominant slip system rather than single slip system. This method can be applied as a complementary method to the intragranular misorientation axis (IGMA) method and can act as bridges between macro-mechanical response and microstructural deformation mechanisms.
要将多晶金属用于高价值、高风险的应用领域,了解其变形机制至关重要。在此,我们报告了一种基于晶格旋转分析的自动化框架,该框架可准确识别滑移系统,并评估多晶锆大型数据集中的多重滑移活动,旨在从统计学角度深入了解锆的变形机制。结果表明,多重滑移是主要的滑移系统,而不是单一滑移系统。该方法可作为晶内错向轴(IGMA)方法的补充方法,并可作为宏观机械响应和微观结构变形机制之间的桥梁。
{"title":"The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework","authors":"Huigang Shi, Jianye Chen, Junqiang Lu, Libing Zhu, Lefu Zhang, Jiuxiao Li, Weijie Lu, Xianglong Guo","doi":"10.1080/21663831.2024.2402370","DOIUrl":"https://doi.org/10.1080/21663831.2024.2402370","url":null,"abstract":"Understanding the deformation mechanism in polycrystalline metals is critical to use them in high-value high-risk applications. Here, we report an automated framework based on lattice rotation analysis for accurately identifying slip system and assessing the multiple slip activities in large data set of polycrystalline Zr, aims to statistically provide deep insight on deformation mechanism of Zr. Results show that multiple slip is the dominant slip system rather than single slip system. This method can be applied as a complementary method to the intragranular misorientation axis (IGMA) method and can act as bridges between macro-mechanical response and microstructural deformation mechanisms.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method 非晶-结晶法制备的 WC-Co 复合材料的微结构演化和增韧机理
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2405085
Maobao Xu, Haibin Wang, Xuemei Liu, Hao Lu, Xiaoyan Song
In this study, toughening of WC-Co composite prepared by amorphous-crystallization method was investigated. Co-rich nanoparticles, a Co(W,C) solid solution, were incorporated into the WC matrix through the process integrating crystallization of amorphous Co2W4C powder and its in-situ reaction with carbon. The microstructural evolution of the ceramic-metal composite during fabrication was studied in detail. Owing to the interactions between Co-rich nanoparticles coherent with the WC matrix and the dislocations and stacking faults inside WC grains, the composite exhibited high hardness and strength combined with exceptional fracture toughness. The mechanisms for the synergistic improvement of mechanical properties of the composite were disclosed.
本研究探讨了非晶-结晶法制备的 WC-Co 复合材料的增韧问题。通过非晶 Co2W4C 粉末的结晶及其与碳的原位反应,富 Co 纳米颗粒(一种 Co(W,C)固溶体)被加入到 WC 基体中。我们详细研究了陶瓷-金属复合材料在制造过程中的微观结构演变。由于富钴纳米粒子与碳化钨基体之间的相互作用,以及碳化钨晶粒内部的位错和堆积断层,复合材料表现出了高硬度、高强度和优异的断裂韧性。研究揭示了该复合材料机械性能协同改善的机制。
{"title":"Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method","authors":"Maobao Xu, Haibin Wang, Xuemei Liu, Hao Lu, Xiaoyan Song","doi":"10.1080/21663831.2024.2405085","DOIUrl":"https://doi.org/10.1080/21663831.2024.2405085","url":null,"abstract":"In this study, toughening of WC-Co composite prepared by amorphous-crystallization method was investigated. Co-rich nanoparticles, a Co(W,C) solid solution, were incorporated into the WC matrix through the process integrating crystallization of amorphous Co<sub>2</sub>W<sub>4</sub>C powder and its in-situ reaction with carbon. The microstructural evolution of the ceramic-metal composite during fabrication was studied in detail. Owing to the interactions between Co-rich nanoparticles coherent with the WC matrix and the dislocations and stacking faults inside WC grains, the composite exhibited high hardness and strength combined with exceptional fracture toughness. The mechanisms for the synergistic improvement of mechanical properties of the composite were disclosed.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significantly reduced lattice defects and improved dielectric properties of MgTiO3 based microwave ceramics via supercritical-fluid assisted oxidation technology
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-10-23 DOI: 10.1016/j.jallcom.2024.177190
Hao Li, Huangbai Liu, Lei Li, Fei Liu, Kuan-Chang Chang, Shaojun Liu
Lattice defects play a crucial role in determining the microwave dielectric properties of ceramics. We herein report a simple way to significantly improve the dielectric properties of MgTiO3 based microwave ceramics by restoring the oxygen vacancy via supercritical assisted oxidation (SAO) technology. The high penetrability of SCCO2 fluid makes the OH groups easy to approach oxygen vacancy, which react with the dangling bonds to form A-O-A (A=Ti/Mg) covalent coordinate bonds. The oxygen vacancy concentration in MgTiO3-CaTiO3 ceramics significantly decreases from 26.7 % to 18.5 % and the Ti-O bond strength is strengthened after SAO treatment. Furthermore, the activation energy Ea increases to 0.60 eV from 0.52 eV, indicating a lower defects density as well. Consequently, MgTiO3-CaTiO3 ceramics treated by SAO exhibit better high-temperature stability in dielectric properties and the Q×f values of MgTiO3-CaTiO3 ceramics increase by 11.3∼19.0 % due to the decreased defects concentration, thereby demonstrating the potential of supercritical fluid technology in achieving performance optimization of microwave dielectric ceramics.
{"title":"Significantly reduced lattice defects and improved dielectric properties of MgTiO3 based microwave ceramics via supercritical-fluid assisted oxidation technology","authors":"Hao Li, Huangbai Liu, Lei Li, Fei Liu, Kuan-Chang Chang, Shaojun Liu","doi":"10.1016/j.jallcom.2024.177190","DOIUrl":"https://doi.org/10.1016/j.jallcom.2024.177190","url":null,"abstract":"Lattice defects play a crucial role in determining the microwave dielectric properties of ceramics. We herein report a simple way to significantly improve the dielectric properties of MgTiO<sub>3</sub> based microwave ceramics by restoring the oxygen vacancy via supercritical assisted oxidation (SAO) technology. The high penetrability of SCCO<sub>2</sub> fluid makes the OH<sup>−</sup> groups easy to approach oxygen vacancy, which react with the dangling bonds to form A-O-A (A=Ti/Mg) covalent coordinate bonds. The oxygen vacancy concentration in MgTiO<sub>3</sub>-CaTiO<sub>3</sub> ceramics significantly decreases from 26.7 % to 18.5 % and the Ti-O bond strength is strengthened after SAO treatment. Furthermore, the activation energy <em>E</em><sub><em>a</em></sub> increases to 0.60 eV from 0.52 eV, indicating a lower defects density as well. Consequently, MgTiO<sub>3</sub>-CaTiO<sub>3</sub> ceramics treated by SAO exhibit better high-temperature stability in dielectric properties and the <em>Q×f</em> values of MgTiO<sub>3</sub>-CaTiO<sub>3</sub> ceramics increase by 11.3∼19.0 % due to the decreased defects concentration, thereby demonstrating the potential of supercritical fluid technology in achieving performance optimization of microwave dielectric ceramics.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research advances of magnesium and magnesium alloys globally in 2023
IF 17.6 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-10-23 DOI: 10.1016/j.jma.2024.10.001
Jia She, Jing Chen, Xiaoming Xiong, Yan Yang, Xiaodong Peng, Daolun Chen, Fusheng Pan
Magnesium materials have attracted the attention of many researchers, and the related research is expanding. This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives. More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science (WoS) Core Collection database last year. The bibliometric analyses show that the traditional structural Mg alloys, functional Mg materials, and corrosion and protection of Mg alloys are still the main research focus. Therefore, this review paper mainly focuses on the research progress of Mg cast alloys, Mg wrought alloys, bio-magnesium alloys, Mg-based energy storage materials, corrosion and protection of Mg alloys in 2023. In addition, future research directions are proposed based on the challenges and obstacles identified throughout this review.
镁材料吸引了众多研究人员的关注,相关研究也在不断扩展。本文从文献计量学和科学角度总结了 2023 年全球镁材料研究与发展的进展。去年,有 4680 多篇关于镁及其合金的文章在科学网(WoS)核心期刊数据库中发表并被收录。文献计量分析表明,传统的结构镁合金、功能镁材料以及镁合金的腐蚀与防护仍是研究重点。因此,本综述论文主要关注 2023 年镁铸造合金、镁锻造合金、生物镁合金、镁基储能材料、镁合金腐蚀与防护的研究进展。此外,还根据本综述中发现的挑战和障碍提出了未来的研究方向。
{"title":"Research advances of magnesium and magnesium alloys globally in 2023","authors":"Jia She, Jing Chen, Xiaoming Xiong, Yan Yang, Xiaodong Peng, Daolun Chen, Fusheng Pan","doi":"10.1016/j.jma.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.jma.2024.10.001","url":null,"abstract":"Magnesium materials have attracted the attention of many researchers, and the related research is expanding. This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives. More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science (WoS) Core Collection database last year. The bibliometric analyses show that the traditional structural Mg alloys, functional Mg materials, and corrosion and protection of Mg alloys are still the main research focus. Therefore, this review paper mainly focuses on the research progress of Mg cast alloys, Mg wrought alloys, bio-magnesium alloys, Mg-based energy storage materials, corrosion and protection of Mg alloys in 2023. In addition, future research directions are proposed based on the challenges and obstacles identified throughout this review.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":null,"pages":null},"PeriodicalIF":17.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable Fabrication of Flexible 3D PEDOT/rGO Scaffold for High-Performance Supercapacitors via a Self-Assembly Method
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-10-23 DOI: 10.1016/j.electacta.2024.145276
Xiaoting Liu, Yingyi Ma, Yu Si, Xinzheng Li, Xinran Li, Jingfang Li
Conducting polymers hold great prospects in energy storage, especially in the field of flexible energy storage, however, their broad applications are limited due to the poor processability, difficulty in structural design diversity and unsatisfactory performance when used alone. Herein, the processability of PEDOT in organic phase is significantly enhanced by surfactant modification via a self-assembly process, contributing to the convenient and low-cost construction of 3D PEDOT architecture. Importantly, the PEDOT and rGO can be introduced into the same porous structure synchronously and conveniently. Superior capacitive performance is shown for the porous PEDOT/rGO film benefits from the combination of PEDOT with excellent electrochemical stability, rGO with high conductivity and porous structure with abundant active sites and chambers for electrolyte storage. The porous PEDOT/rGO film can be used as a scaffold for the deposition of conductive polymers. For example, once PPy is deposited, a high specific capacitance of 407.8 F g-1 at a current density of 0.5 A g-1, accompanied by a prominent capacitance retention of 90% after 5000 cycles are achieved. When it is used to construct the symmetric supercapacitor (SSC), a high energy density of 52.9 Wh kg-1 at the power density of 200.2 W kg-1 is delivered, with a high capacitance retention of 85%. Moreover, it shows excellent mechanical flexibility upon multiple bending cycles, rendering great potential in portable or wearable energy storage devices.
{"title":"Scalable Fabrication of Flexible 3D PEDOT/rGO Scaffold for High-Performance Supercapacitors via a Self-Assembly Method","authors":"Xiaoting Liu, Yingyi Ma, Yu Si, Xinzheng Li, Xinran Li, Jingfang Li","doi":"10.1016/j.electacta.2024.145276","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145276","url":null,"abstract":"Conducting polymers hold great prospects in energy storage, especially in the field of flexible energy storage, however, their broad applications are limited due to the poor processability, difficulty in structural design diversity and unsatisfactory performance when used alone. Herein, the processability of PEDOT in organic phase is significantly enhanced by surfactant modification via a self-assembly process, contributing to the convenient and low-cost construction of 3D PEDOT architecture. Importantly, the PEDOT and rGO can be introduced into the same porous structure synchronously and conveniently. Superior capacitive performance is shown for the porous PEDOT/rGO film benefits from the combination of PEDOT with excellent electrochemical stability, rGO with high conductivity and porous structure with abundant active sites and chambers for electrolyte storage. The porous PEDOT/rGO film can be used as a scaffold for the deposition of conductive polymers. For example, once PPy is deposited, a high specific capacitance of 407.8 F g<sup>-1</sup> at a current density of 0.5 A g<sup>-1</sup>, accompanied by a prominent capacitance retention of 90% after 5000 cycles are achieved. When it is used to construct the symmetric supercapacitor (SSC), a high energy density of 52.9 Wh kg<sup>-1</sup> at the power density of 200.2 W kg<sup>-1</sup> is delivered, with a high capacitance retention of 85%. Moreover, it shows excellent mechanical flexibility upon multiple bending cycles, rendering great potential in portable or wearable energy storage devices.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Energy Lett. ACS Nano Chem. Mater. Nano Lett. Energy Environ. Sci. J. Mater. Chem. A Mater. Chem. Front. Mater. Horiz. Nanoscale Nanoscale Horiz. Sustainable Energy Fuels Adv. Electron. Mater. Adv. Energy Mater. Adv. Funct. Mater. Adv. Mater. Adv. Mater. Interfaces Adv. Opt. Mater. Adv. Sci. Batteries Supercaps J. Am. Ceram. Soc. PROG PHOTOVOLTAICS Small Small Methods Acta Mater. Appl. Surf. Sci. Carbon Ceram. Int. Compos. Sci. Technol. Corros. Sci. CURR OPIN SOLID ST M Dyes Pigm. Electrochim. Acta Energy Storage Mater. FlatChem Intermetallics Int. J. Plast. Joule J. Alloys Compd. J. Cryst. Growth J. Magn. Magn. Mater. J. Mater. Process. Technol. Mater. Des. Mater. Lett. Mater. Today Matter Microporous Mesoporous Mater. Nano Energy Nano Today Particuology Prog. Cryst. Growth Charact. Mater. Prog. Mater Sci. Scr. Mater. Sol. Energy Mater. Sol. Cells Solid State Ionics Adv. Fiber Mater. Appl. Compos. Mater. Bull. Mater. Sci. Carbon Lett. Cellulose Crystallogr. Rep. Electron. Mater. Lett. Eur. J. Wood Wood Prod. Fashion Text. Fibers Polym. Front. Mater. Sci. Glass Ceram. Glass Phys. Chem Inorg. Mater. Int. J. Mater. Form. Int. J. Mech. Mater. Des. JOM-US J. Coat. Technol. Res. J. Electroceram. J. Mater. Eng. Perform. J. Mater. Sci. J. Nanopart. Res. J. Nondestr. Eval. J PHASE EQUILIB DIFF J. Porous Mater. J. Sol-Gel Sci. Technol. J. Superhard Mater. J. Aust. Ceram. Soc. J. Therm. Spray Technol. MECH TIME-DEPEND MAT Met. Sci. Heat Treat. METALLURGIST+ Met. Mater. Int. Nano Convergence Nano Res. Nano-Micro Lett. Oxid. Met. Phys. Mesomech. Powder Metall. Met. Ceram. Prot. Met. Phys. Chem Rare Met. Refract. Ind. Ceram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1