首页 > 最新文献

材料科学最新文献

英文 中文
IF:
Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena 多晶信息学:通过揭示复杂现象推动材料科学发展的方法学
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2396272
Noritaka Usami, Kentaro Kutsukake, Takuto Kojima, Hiroaki Kudo, Tatsuya Yokoi, Yutaka Ohno
Multicrystalline materials play a crucial role in our society. However, their microstructure is complicated, and there is no universal approach to achieving high performance. Therefore, a methodology is necessary to answer the fundamental question of how we should design and create microstructures. ‘Multicrystalline informatics’ is an innovative approach that combines experimental, theoretical, computational, and data sciences. This approach helps us understand complex phenomena in multicrystalline materials and improve their performance. The paper covers various original research bases of multicrystalline informatics, such as the three-dimensional visualization of crystal defects in multicrystalline materials, the machine learning model for predicting crystal orientation distribution, network analysis of multicrystalline structures, computational methods using artificial neural network interatomic potentials, and so on. The integration of these research bases proves to be useful in understanding unexplained phenomena in complex multicrystalline materials. The paper also presents examples of efficient optimization of the growth process of high-quality materials with the aid of informatics, as well as prospects for extending the methodology to other materials.
多晶材料在我们的社会中发挥着至关重要的作用。然而,它们的微观结构非常复杂,没有一种通用的方法可以实现高性能。因此,我们需要一种方法来回答如何设计和创造微结构这一根本问题。多晶体信息学 "是一种结合了实验、理论、计算和数据科学的创新方法。这种方法有助于我们理解多晶材料中的复杂现象并提高其性能。论文涵盖了多晶信息学的各种原创研究基础,如多晶材料晶体缺陷的三维可视化、预测晶体取向分布的机器学习模型、多晶结构的网络分析、利用人工神经网络原子间势的计算方法等。事实证明,整合这些研究基础有助于理解复杂多晶材料中无法解释的现象。论文还介绍了借助信息学有效优化高质量材料生长过程的实例,以及将该方法扩展到其他材料的前景。
{"title":"Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena","authors":"Noritaka Usami, Kentaro Kutsukake, Takuto Kojima, Hiroaki Kudo, Tatsuya Yokoi, Yutaka Ohno","doi":"10.1080/14686996.2024.2396272","DOIUrl":"https://doi.org/10.1080/14686996.2024.2396272","url":null,"abstract":"Multicrystalline materials play a crucial role in our society. However, their microstructure is complicated, and there is no universal approach to achieving high performance. Therefore, a methodology is necessary to answer the fundamental question of how we should design and create microstructures. ‘Multicrystalline informatics’ is an innovative approach that combines experimental, theoretical, computational, and data sciences. This approach helps us understand complex phenomena in multicrystalline materials and improve their performance. The paper covers various original research bases of multicrystalline informatics, such as the three-dimensional visualization of crystal defects in multicrystalline materials, the machine learning model for predicting crystal orientation distribution, network analysis of multicrystalline structures, computational methods using artificial neural network interatomic potentials, and so on. The integration of these research bases proves to be useful in understanding unexplained phenomena in complex multicrystalline materials. The paper also presents examples of efficient optimization of the growth process of high-quality materials with the aid of informatics, as well as prospects for extending the methodology to other materials.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy 利用原子力显微镜跟踪 SIS 热塑性弹性体在拉力作用下的形态和应力分布演变情况
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2402685
Ling Gao, Haonan Liu, Xiaobin Liang, Makiko Ito, Ken Nakajima
Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene-b-isoprene-b-styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young’s modulus diagram during stretching was consistent with the stress – strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.
苯乙烯基 ABA 型三嵌段共聚物及其共混物是被广泛研究的热塑性弹性体(TPE)。要设计出具有高强度和回弹性的坚韧 TPE 材料,就必须进一步阐明拉伸样品的微观结构与宏观特性之间的关系。在此,我们应用基于原子力显微镜 (AFM) 的定量纳米力学图谱研究了聚苯乙烯-异戊二烯-苯乙烯共混物在拉伸条件下的变形行为。结果表明,在拉伸初始阶段,玻璃态聚苯乙烯(PS)畴发生变形,并形成不均匀的应力分布。当应变达到 200% 时,玻璃态 PS 结构域开始出现裂纹。拉伸过程中 JKR 杨氏模量图的峰值变化与应力-应变曲线一致。对拉伸前后颗粒的分析表明,玻璃态结构域在拉伸过程中发生了分离和重组。
{"title":"Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy","authors":"Ling Gao, Haonan Liu, Xiaobin Liang, Makiko Ito, Ken Nakajima","doi":"10.1080/14686996.2024.2402685","DOIUrl":"https://doi.org/10.1080/14686996.2024.2402685","url":null,"abstract":"Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene-<i>b</i>-isoprene-<i>b</i>-styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young’s modulus diagram during stretching was consistent with the stress – strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs 用于白光 LED 的稳定且可发出橙黄色光的富硒多晶体 α-SiAlON (Sr3Si24Al6N40:Eu2+) 荧光粉
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2396276
Mehdi Estili, Rong-Jun Xie, Kohsei Takahashi, Shiro Funahashi, Tohru S. Suzuki, Naoto Hirosaki
Nitrides and oxynitrides isostructural to α-Si3N4 (M-α-SiAlON, M = Sr, Ca, Li) possess superb thermally stable photoluminescence (PL) properties, making them reliable phosphors for high-power solid-state lighting. However, the synthesis of phase-pure Sr-α-SiAlON still remains a great challenge and has only been reported for Sr below 1.35 at.% as the large size of Sr2+ ions tends to destabilize the α-SiAlON structure. Here, we succeeded to synthesize the single-phase powders of a unique ‘Sr-rich’ polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor with three distinctive Sr/Eu luminescence sites using a solid-state remixing-reannealing process. The Sr content of this polytypoid structure exceeds those of a few previously reported structures by over 200%. The phase purity, composition, structure, and PL properties of this phosphor were investigated. A single phase can be obtained by firing the stoichiometric mixtures of all-nitride precursors at 2050°C under a 0.92 MPa N2 atmosphere. The Sr3Si24Al6N40:Eu2+ shows an intense orange-yellow emission, with the emission maximum of 590 nm and internal/external quantum efficiency of 66%/52% under 400 nm excitation. It also has a quite small thermal quenching, maintaining 93% emission intensity at 150°C. In comparison to Ca-α-SiAlON:Eu2+, this Sr counterpart shows superior quantum efficiency and thermal stability, enabling it to be an interesting orange-yellow down-conversion luminescent material for white LEDs. The experimental confirmation of the existence of such ‘Sr-rich’ SiAlON systems, in a single-phase powder form, paves the way for the design and synthesis of novel ‘Sr-rich’ SiAlON-based phosphor powders with unparalleled properties.
与 α-Si3N4(M-α-SiAlON,M = Sr、Ca、Li)结构相同的氮化物和氧化氮化物具有极佳的热稳定光致发光(PL)特性,是大功率固态照明的可靠荧光粉。然而,相纯 Sr-α-SiAlON 的合成仍然是一个巨大的挑战,目前只有关于 Sr 低于 1.35 at.% 的报道,因为大尺寸的 Sr2+ 离子往往会破坏 α-SiAlON 结构的稳定性。在这里,我们采用固态混料-退火工艺,成功合成了一种独特的 "富硒 "多晶α-SiAlON(Sr3Si24Al6N40:Eu2+)单相粉末荧光粉,这种荧光粉具有三个独特的 Sr/Eu 发光位点。这种多环状结构的硒含量比之前报道的几种结构的硒含量高出 200% 以上。研究人员对这种荧光粉的相纯度、组成、结构和聚光特性进行了研究。在 0.92 兆帕的氮气环境下,于 2050°C 煅烧全氮化前驱体的化学计量混合物,可获得单相。Sr3Si24Al6N40:Eu2+ 发出强烈的橙黄色光,发射最大值为 590 纳米,在 400 纳米激发下的内部/外部量子效率分别为 66%/52% 。它的热淬灭效应也相当小,在 150°C 时仍能保持 93% 的发射强度。与 Ca-α-SiAlON:Eu2+ 相比,这种硒对应物显示出更高的量子效率和热稳定性,使其成为一种用于白光 LED 的有趣的橙黄色向下转换发光材料。实验证实了这种单相粉末形式的 "富硒 "SiAlON 系统的存在,为设计和合成具有无与伦比特性的新型 "富硒 "SiAlON 基荧光粉铺平了道路。
{"title":"Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs","authors":"Mehdi Estili, Rong-Jun Xie, Kohsei Takahashi, Shiro Funahashi, Tohru S. Suzuki, Naoto Hirosaki","doi":"10.1080/14686996.2024.2396276","DOIUrl":"https://doi.org/10.1080/14686996.2024.2396276","url":null,"abstract":"Nitrides and oxynitrides isostructural to α-Si<sub>3</sub>N<sub>4</sub> (<i>M</i>-α-SiAlON, <i>M</i> = Sr, Ca, Li) possess superb thermally stable photoluminescence (PL) properties, making them reliable phosphors for high-power solid-state lighting. However, the synthesis of phase-pure Sr-α-SiAlON still remains a great challenge and has only been reported for Sr below 1.35 at.% as the large size of Sr<sup>2+</sup> ions tends to destabilize the α-SiAlON structure. Here, we succeeded to synthesize the single-phase powders of a unique ‘Sr-rich’ polytypoid α-SiAlON (Sr<sub>3</sub>Si<sub>24</sub>Al<sub>6</sub>N<sub>40</sub>:Eu<sup>2+</sup>) phosphor with three distinctive Sr/Eu luminescence sites using a solid-state remixing-reannealing process. The Sr content of this polytypoid structure exceeds those of a few previously reported structures by over 200%. The phase purity, composition, structure, and PL properties of this phosphor were investigated. A single phase can be obtained by firing the stoichiometric mixtures of all-nitride precursors at 2050°C under a 0.92 MPa N<sub>2</sub> atmosphere. The Sr<sub>3</sub>Si<sub>24</sub>Al<sub>6</sub>N<sub>40</sub>:Eu<sup>2+</sup> shows an intense orange-yellow emission, with the emission maximum of 590 nm and internal/external quantum efficiency of 66%/52% under 400 nm excitation. It also has a quite small thermal quenching, maintaining 93% emission intensity at 150°C. In comparison to Ca-α-SiAlON:Eu<sup>2+</sup>, this Sr counterpart shows superior quantum efficiency and thermal stability, enabling it to be an interesting orange-yellow down-conversion luminescent material for white LEDs. The experimental confirmation of the existence of such ‘Sr-rich’ SiAlON systems, in a single-phase powder form, paves the way for the design and synthesis of novel ‘Sr-rich’ SiAlON-based phosphor powders with unparalleled properties.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive data network for data-driven study of battery materials 用于电池材料数据驱动研究的综合数据网络
IF 5.5 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-31 DOI: 10.1080/14686996.2024.2403328
Yibin Xu, Yen-Ju Wu, Huiping Li, Lei Fang, Shigenobu Hayashi, Ayako Oishi, Natsuko Shimizu, Riccarda Caputo, Pierre Villars
Data-driven material research for property prediction and material design using machine learning methods requires a large quantity, wide variety, and high-quality materials data. For battery materials, which are commonly polycrystalline, ceramics, and composites, multiscale data on substances, materials, and batteries are required. In this work, we develop a data network composed of three interlinked databases, from which we can obtain comprehensive data on substances such as crystal structures and electronic structures, data on materials such as chemical composition, structure, and properties, and data on batteries such as battery composition, operation conditions, and capacity. The data are extracted from research papers on solid electrolytes and cathode materials, selected by screening more than 330 thousand papers using natural language processing tools. Data extraction and curation are carried out by editors specialized in material science and trained in data standardization.
使用机器学习方法进行性能预测和材料设计的数据驱动型材料研究需要大量、多样和高质量的材料数据。电池材料通常是多晶体、陶瓷和复合材料,因此需要有关物质、材料和电池的多尺度数据。在这项工作中,我们开发了一个由三个相互关联的数据库组成的数据网络,从中可以获得晶体结构和电子结构等物质的综合数据,化学成分、结构和性能等材料的数据,以及电池组成、运行条件和容量等电池的数据。这些数据是从有关固体电解质和阴极材料的研究论文中提取的,使用自然语言处理工具筛选了 33 万多篇论文。数据提取和整理工作由材料科学领域的专业编辑完成,并接受过数据标准化方面的培训。
{"title":"A comprehensive data network for data-driven study of battery materials","authors":"Yibin Xu, Yen-Ju Wu, Huiping Li, Lei Fang, Shigenobu Hayashi, Ayako Oishi, Natsuko Shimizu, Riccarda Caputo, Pierre Villars","doi":"10.1080/14686996.2024.2403328","DOIUrl":"https://doi.org/10.1080/14686996.2024.2403328","url":null,"abstract":"Data-driven material research for property prediction and material design using machine learning methods requires a large quantity, wide variety, and high-quality materials data. For battery materials, which are commonly polycrystalline, ceramics, and composites, multiscale data on substances, materials, and batteries are required. In this work, we develop a data network composed of three interlinked databases, from which we can obtain comprehensive data on substances such as crystal structures and electronic structures, data on materials such as chemical composition, structure, and properties, and data on batteries such as battery composition, operation conditions, and capacity. The data are extracted from research papers on solid electrolytes and cathode materials, selected by screening more than 330 thousand papers using natural language processing tools. Data extraction and curation are carried out by editors specialized in material science and trained in data standardization.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels 在异质超细晶粒层状钢中通过晶界分层消除温度与韧性之间的矛盾
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2399880
Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo
Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.
通过温变形工艺制备了具有双峰晶粒层状(BG-L)和超细晶粒层状(UFG-L)微观结构的异种结构铁素体钢。与传统的淬火回火(QT)钢相比,BG-L 钢的机械性能有所提高。而 UFG-L 钢则在强度、延展性和韧性方面都有出色的表现。此外,从室温(RT)到液氮温度(LNT),UFG-L 钢没有出现韧性到脆性的转变(DBT),在 LNT 温度下的夏比冲击能仍然高达 314 J。液氮温度下韧性的增强可归因于晶界分层引起的裂纹-断裂机制。
{"title":"Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels","authors":"Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo","doi":"10.1080/21663831.2024.2399880","DOIUrl":"https://doi.org/10.1080/21663831.2024.2399880","url":null,"abstract":"Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework 利用自动晶格旋转框架激活多晶锆中的多重滑移系统
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2402370
Huigang Shi, Jianye Chen, Junqiang Lu, Libing Zhu, Lefu Zhang, Jiuxiao Li, Weijie Lu, Xianglong Guo
Understanding the deformation mechanism in polycrystalline metals is critical to use them in high-value high-risk applications. Here, we report an automated framework based on lattice rotation analysis for accurately identifying slip system and assessing the multiple slip activities in large data set of polycrystalline Zr, aims to statistically provide deep insight on deformation mechanism of Zr. Results show that multiple slip is the dominant slip system rather than single slip system. This method can be applied as a complementary method to the intragranular misorientation axis (IGMA) method and can act as bridges between macro-mechanical response and microstructural deformation mechanisms.
要将多晶金属用于高价值、高风险的应用领域,了解其变形机制至关重要。在此,我们报告了一种基于晶格旋转分析的自动化框架,该框架可准确识别滑移系统,并评估多晶锆大型数据集中的多重滑移活动,旨在从统计学角度深入了解锆的变形机制。结果表明,多重滑移是主要的滑移系统,而不是单一滑移系统。该方法可作为晶内错向轴(IGMA)方法的补充方法,并可作为宏观机械响应和微观结构变形机制之间的桥梁。
{"title":"The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework","authors":"Huigang Shi, Jianye Chen, Junqiang Lu, Libing Zhu, Lefu Zhang, Jiuxiao Li, Weijie Lu, Xianglong Guo","doi":"10.1080/21663831.2024.2402370","DOIUrl":"https://doi.org/10.1080/21663831.2024.2402370","url":null,"abstract":"Understanding the deformation mechanism in polycrystalline metals is critical to use them in high-value high-risk applications. Here, we report an automated framework based on lattice rotation analysis for accurately identifying slip system and assessing the multiple slip activities in large data set of polycrystalline Zr, aims to statistically provide deep insight on deformation mechanism of Zr. Results show that multiple slip is the dominant slip system rather than single slip system. This method can be applied as a complementary method to the intragranular misorientation axis (IGMA) method and can act as bridges between macro-mechanical response and microstructural deformation mechanisms.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method 非晶-结晶法制备的 WC-Co 复合材料的微结构演化和增韧机理
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2405085
Maobao Xu, Haibin Wang, Xuemei Liu, Hao Lu, Xiaoyan Song
In this study, toughening of WC-Co composite prepared by amorphous-crystallization method was investigated. Co-rich nanoparticles, a Co(W,C) solid solution, were incorporated into the WC matrix through the process integrating crystallization of amorphous Co2W4C powder and its in-situ reaction with carbon. The microstructural evolution of the ceramic-metal composite during fabrication was studied in detail. Owing to the interactions between Co-rich nanoparticles coherent with the WC matrix and the dislocations and stacking faults inside WC grains, the composite exhibited high hardness and strength combined with exceptional fracture toughness. The mechanisms for the synergistic improvement of mechanical properties of the composite were disclosed.
本研究探讨了非晶-结晶法制备的 WC-Co 复合材料的增韧问题。通过非晶 Co2W4C 粉末的结晶及其与碳的原位反应,富 Co 纳米颗粒(一种 Co(W,C)固溶体)被加入到 WC 基体中。我们详细研究了陶瓷-金属复合材料在制造过程中的微观结构演变。由于富钴纳米粒子与碳化钨基体之间的相互作用,以及碳化钨晶粒内部的位错和堆积断层,复合材料表现出了高硬度、高强度和优异的断裂韧性。研究揭示了该复合材料机械性能协同改善的机制。
{"title":"Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method","authors":"Maobao Xu, Haibin Wang, Xuemei Liu, Hao Lu, Xiaoyan Song","doi":"10.1080/21663831.2024.2405085","DOIUrl":"https://doi.org/10.1080/21663831.2024.2405085","url":null,"abstract":"In this study, toughening of WC-Co composite prepared by amorphous-crystallization method was investigated. Co-rich nanoparticles, a Co(W,C) solid solution, were incorporated into the WC matrix through the process integrating crystallization of amorphous Co<sub>2</sub>W<sub>4</sub>C powder and its in-situ reaction with carbon. The microstructural evolution of the ceramic-metal composite during fabrication was studied in detail. Owing to the interactions between Co-rich nanoparticles coherent with the WC matrix and the dislocations and stacking faults inside WC grains, the composite exhibited high hardness and strength combined with exceptional fracture toughness. The mechanisms for the synergistic improvement of mechanical properties of the composite were disclosed.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidized dextran-modified cotton gauze for application as a fouling-resistant wound dressing 用作抗污伤口敷料的氧化葡聚糖改性棉纱布
IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-09 DOI: 10.1007/s12034-024-03342-w
Madhusmita Sahoo, Rohan Sanklecha, Debirupa Mitra

Cotton gauze (CG) is the most commonly used primary wound dressing to protect wounds from the external environment. However, it is highly susceptible to fouling due to the adhesion of bacteria present on the wound surface. Bacterial colonization of the dressing is detrimental as it aids in wound infection and delays wound healing. To mitigate this issue, the objective of this study was to transform the inert CG into a fouling-resistant wound dressing that can actively resist bacterial adhesion and also prevent biofilm formation on the surface of cotton. In this work, a facile method of modifying commercial CG using oxidized dextran (Odex) was developed. Odex was derived from dextran via periodate oxidation reaction and then coated over the CG using mussel-inspired chemistry. The resultant Odex-modified CG demonstrated a substantial reduction in bacterial adhesion after 4 h of incubation in bacterial suspension. The modified gauze suppressed biofilm formation, achieving ~83% reduction in viable bacterial count as compared to unmodified CG after 48 h of incubation in the bacterial suspension. In addition, the modified CG also showed good breathability, wettability and moisture retention properties. The results suggest a promising approach of transforming inert CG into a potential fouling-resistant wound dressing for the management of wound infections.

棉纱布(CG)是最常用的主要伤口敷料,用于保护伤口免受外部环境的影响。然而,由于伤口表面有细菌附着,敷料极易结垢。敷料上的细菌定植会助长伤口感染并延迟伤口愈合,因而是有害的。为了缓解这一问题,本研究的目的是将惰性 CG 转变为一种抗污伤口敷料,这种敷料能主动抵抗细菌粘附,还能防止棉花表面形成生物膜。在这项工作中,我们开发了一种利用氧化右旋糖酐(Odex)改性商品化 CG 的简便方法。Odex 是通过高碘酸盐氧化反应从葡聚糖中提取出来的,然后利用贻贝启发的化学反应将其涂覆在 CG 上。在细菌悬浮液中培养 4 小时后,Odex 改性纱布的细菌粘附性显著降低。在细菌悬浮液中培养 48 小时后,改性纱布抑制了生物膜的形成,与未经改性的 CG 相比,其存活细菌数减少了约 83%。此外,改性 CG 还具有良好的透气性、润湿性和保湿性。这些结果表明,将惰性 CG 转化为潜在的抗污伤口敷料,用于伤口感染的治疗是一种很有前景的方法。
{"title":"Oxidized dextran-modified cotton gauze for application as a fouling-resistant wound dressing","authors":"Madhusmita Sahoo,&nbsp;Rohan Sanklecha,&nbsp;Debirupa Mitra","doi":"10.1007/s12034-024-03342-w","DOIUrl":"10.1007/s12034-024-03342-w","url":null,"abstract":"<div><p>Cotton gauze (CG) is the most commonly used primary wound dressing to protect wounds from the external environment. However, it is highly susceptible to fouling due to the adhesion of bacteria present on the wound surface. Bacterial colonization of the dressing is detrimental as it aids in wound infection and delays wound healing. To mitigate this issue, the objective of this study was to transform the inert CG into a fouling-resistant wound dressing that can actively resist bacterial adhesion and also prevent biofilm formation on the surface of cotton. In this work, a facile method of modifying commercial CG using oxidized dextran (Odex) was developed. Odex was derived from dextran via periodate oxidation reaction and then coated over the CG using mussel-inspired chemistry. The resultant Odex-modified CG demonstrated a substantial reduction in bacterial adhesion after 4 h of incubation in bacterial suspension. The modified gauze suppressed biofilm formation, achieving ~83% reduction in viable bacterial count as compared to unmodified CG after 48 h of incubation in the bacterial suspension. In addition, the modified CG also showed good breathability, wettability and moisture retention properties. The results suggest a promising approach of transforming inert CG into a potential fouling-resistant wound dressing for the management of wound infections.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical-induced morphological formation and optical properties of p-type silicon wafer 电化学诱导的 p 型硅晶片形貌形成和光学特性
IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-09 DOI: 10.1007/s12034-024-03349-3
Mohd Norizam Md Daud, Mohamad Firdaus Mohamad Noh, Nurul Affiqah Arzaee, Amin Aadenan, Danial Hakim Badrul Hisham, Muhammad Athir Mohamed Anuar, Mohd Adib Ibrahim, Suhaila Sepeai, Mohd Asri Mat Teridi

The enhancement of light absorption and surface area in monocrystalline solar cells is achieved through anisotropic etching, with the aim of improving its conversion efficiency. Nevertheless, the conventional method of anisotropic etching is constrained in its capacity for incrementing surface area. Herein, a promising texturization process in the form of a homogenous and uniform pyramidal structure is proposed with two-step texturing processes: cyclic voltammetry (CV) treatment and the alkali anisotropic etching method on the silicon wafer surface. Prior to and following the alkali texturing process, the silicon surface was modified using the CV treatment. The effect of this approach was investigated under different CV cycles (20, 40, 60 and 80 cycles) in a 0.5 M Na2SO4 aqueous electrolyte with pH ~ 7. Based on the field emission scanning electron microscope (FESEM) micrographs and UV-visible spectrometer (UV-Vis) measurements, the wafer textured with 60 cycles of CV treatment and an alkali anisotropic etching process tremendously improves the surface morphology and decreases the front surface reflection. As a result, the size and height of the pyramid formed were 2.1–2.3 µm and 0.6–1.9 µm, respectively. Moreover, the outlined methodology facilitates a substantial decrease in surface damage and is applicable in the Si texturization process for the manufacturing of solar cells.

通过各向异性蚀刻,可以增强单晶硅太阳能电池的光吸收和表面积,从而提高其转换效率。然而,传统的各向异性蚀刻方法在增加表面积方面受到限制。在此,我们提出了一种很有前景的制绒工艺,即在硅晶片表面采用两步制绒工艺制备均匀一致的金字塔结构:循环伏安法(CV)处理和碱各向异性蚀刻法。在碱制绒工艺之前和之后,使用循环伏安法对硅表面进行了改性。在 pH 值为 7 ~ 7 的 0.5 M Na2SO4 水电解液中,研究了不同 CV 周期(20、40、60 和 80 个周期)下这种方法的效果。根据场发射扫描电子显微镜(FESEM)显微照片和紫外-可见光谱仪(UV-Vis)的测量结果,经过 60 次 CV 处理和碱各向异性蚀刻工艺制备纹理的晶片极大地改善了表面形貌,减少了正面反射。因此,形成的金字塔尺寸和高度分别为 2.1-2.3 µm 和 0.6-1.9 µm。此外,所概述的方法有助于大幅减少表面损伤,适用于制造太阳能电池的硅纹理化工艺。
{"title":"Electrochemical-induced morphological formation and optical properties of p-type silicon wafer","authors":"Mohd Norizam Md Daud,&nbsp;Mohamad Firdaus Mohamad Noh,&nbsp;Nurul Affiqah Arzaee,&nbsp;Amin Aadenan,&nbsp;Danial Hakim Badrul Hisham,&nbsp;Muhammad Athir Mohamed Anuar,&nbsp;Mohd Adib Ibrahim,&nbsp;Suhaila Sepeai,&nbsp;Mohd Asri Mat Teridi","doi":"10.1007/s12034-024-03349-3","DOIUrl":"10.1007/s12034-024-03349-3","url":null,"abstract":"<div><p>The enhancement of light absorption and surface area in monocrystalline solar cells is achieved through anisotropic etching, with the aim of improving its conversion efficiency. Nevertheless, the conventional method of anisotropic etching is constrained in its capacity for incrementing surface area. Herein, a promising texturization process in the form of a homogenous and uniform pyramidal structure is proposed with two-step texturing processes: cyclic voltammetry (CV) treatment and the alkali anisotropic etching method on the silicon wafer surface. Prior to and following the alkali texturing process, the silicon surface was modified using the CV treatment. The effect of this approach was investigated under different CV cycles (20, 40, 60 and 80 cycles) in a 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte with pH ~ 7. Based on the field emission scanning electron microscope (FESEM) micrographs and UV-visible spectrometer (UV-Vis) measurements, the wafer textured with 60 cycles of CV treatment and an alkali anisotropic etching process tremendously improves the surface morphology and decreases the front surface reflection. As a result, the size and height of the pyramid formed were 2.1–2.3 µm and 0.6–1.9 µm, respectively. Moreover, the outlined methodology facilitates a substantial decrease in surface damage and is applicable in the Si texturization process for the manufacturing of solar cells.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of limestone and its behavior in different conditions after treatment with CaZn2(OH)6·2H2O nanoparticles 用 CaZn2(OH)6-2H2O 纳米颗粒处理石灰石后的特性及其在不同条件下的表现
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1007/s11051-024-06154-5
Javier Reyes-Trujeque, Aketzali A. García-Reyes, Stephania Lázaro-Mass, Patricia Quintana, Claudia García-Solís, Montserrat Soria-Castro

Nowadays, extreme environmental conditions are one of the main factors causing the deterioration of monuments built with limestone. Therefore, this study proposed the evaluation of the consolidating effect of calcium zinc hydroxide dihydrate nanoparticles, with the molecular formula CaZn2(OH)6·2H2O (CZ), applied on Calcehtok limestone. The consolidating effect of nanoparticles was characterized through mineralogical analysis by X-ray diffraction (XRD), and the morphological and elemental composition by scanning electron microscopy (SEM) on 2.2 cm × 1 cm × 1.5 cm limestone samples. The petrophysical properties as spectrophotometry, Leeb hardness test and contact angle, were measured on 5 cm × 5 cm × 3.5 cm limestone samples. In addition, XRD studies were carried out on the CZ-treated and -untreated stones under laboratory conditions and exposed to the natural environment. The results obtained through an accelerated chamber of relative humidity (RH, 80%) and temperature (25 °C) showed an improvement in Leeb hardness and contact angle, without affecting the color of the stone. Therefore, it is proposed that the warm conditions of relative humidity and temperature favor the consolidation, as the pores are filled by the binding of calcite grains as seen by SEM. After 15 days of exposure, a rapid transformation of portlandite into calcite was observed, while at 30 days, calcite and zincite can still be detected by XRD. The combination of SEM and XRD techniques, together with the measurement of petrophysical properties, corroborated these results, showing the homogenization of the surfaces of the samples due to the decrease of cracks, the filling of cavities, and pores; therefore, this treatment favored its resistance. The XRD results further confirmed the presence of CZ after 30 days under the both laboratory and natural conditions, and its degradation into calcite and zincite was still ongoing after 90 days of exposure.

如今,极端的环境条件是造成石灰岩古迹老化的主要因素之一。因此,本研究建议评估二水氢氧化钙锌纳米粒子(分子式为 CaZn2(OH)6-2H2O(CZ))在卡尔切托克石灰岩上的固结效果。通过对 2.2 cm × 1 cm × 1.5 cm 的石灰石样品进行 X 射线衍射(XRD)矿物学分析以及扫描电子显微镜(SEM)形态和元素组成分析,确定了纳米颗粒的固结效果。在 5 厘米 × 5 厘米 × 3.5 厘米的石灰石样品上测量了分光光度法、里氏硬度测试和接触角等岩石物理特性。此外,还在实验室条件下对经过 CZ 处理和未经过 CZ 处理的石头进行了 XRD 研究。通过相对湿度(RH,80%)和温度(25 °C)的加速室得出的结果显示,石材的里氏硬度和接触角都有所提高,但石材的颜色没有受到影响。因此,我们认为,相对湿度和温度的温暖条件有利于固结,因为从扫描电镜中可以看到,孔隙被方解石颗粒的结合力填满。暴露 15 天后,观察到波长石迅速转变为方解石,而 30 天后,XRD 仍可检测到方解石和锌矿。结合扫描电镜和 XRD 技术以及岩石物理特性的测量结果证实了这些结果,表明由于裂缝的减少、空洞和孔隙的填充,样品表面变得均匀;因此,这种处理方法有利于其抗性。XRD 结果进一步证实,在实验室和自然条件下,30 天后 CZ 仍然存在,90 天后仍在降解为方解石和锌矿。
{"title":"Characterization of limestone and its behavior in different conditions after treatment with CaZn2(OH)6·2H2O nanoparticles","authors":"Javier Reyes-Trujeque,&nbsp;Aketzali A. García-Reyes,&nbsp;Stephania Lázaro-Mass,&nbsp;Patricia Quintana,&nbsp;Claudia García-Solís,&nbsp;Montserrat Soria-Castro","doi":"10.1007/s11051-024-06154-5","DOIUrl":"10.1007/s11051-024-06154-5","url":null,"abstract":"<div><p>Nowadays, extreme environmental conditions are one of the main factors causing the deterioration of monuments built with limestone. Therefore, this study proposed the evaluation of the consolidating effect of calcium zinc hydroxide dihydrate nanoparticles, with the molecular formula CaZn<sub>2</sub>(OH)<sub>6</sub>·2H<sub>2</sub>O (CZ), applied on Calcehtok limestone. The consolidating effect of nanoparticles was characterized through mineralogical analysis by X-ray diffraction (XRD), and the morphological and elemental composition by scanning electron microscopy (SEM) on 2.2 cm × 1 cm × 1.5 cm limestone samples. The petrophysical properties as spectrophotometry, Leeb hardness test and contact angle, were measured on 5 cm × 5 cm × 3.5 cm limestone samples. In addition, XRD studies were carried out on the CZ-treated and -untreated stones under laboratory conditions and exposed to the natural environment. The results obtained through an accelerated chamber of relative humidity (RH, 80%) and temperature (25 °C) showed an improvement in Leeb hardness and contact angle, without affecting the color of the stone. Therefore, it is proposed that the warm conditions of relative humidity and temperature favor the consolidation, as the pores are filled by the binding of calcite grains as seen by SEM. After 15 days of exposure, a rapid transformation of portlandite into calcite was observed, while at 30 days, calcite and zincite can still be detected by XRD. The combination of SEM and XRD techniques, together with the measurement of petrophysical properties, corroborated these results, showing the homogenization of the surfaces of the samples due to the decrease of cracks, the filling of cavities, and pores; therefore, this treatment favored its resistance. The XRD results further confirmed the presence of CZ after 30 days under the both laboratory and natural conditions, and its degradation into calcite and zincite was still ongoing after 90 days of exposure.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Energy Lett. ACS Nano Chem. Mater. Nano Lett. Energy Environ. Sci. J. Mater. Chem. A Mater. Chem. Front. Mater. Horiz. Nanoscale Nanoscale Horiz. Sustainable Energy Fuels Adv. Electron. Mater. Adv. Energy Mater. Adv. Funct. Mater. Adv. Mater. Adv. Mater. Interfaces Adv. Opt. Mater. Adv. Sci. Batteries Supercaps J. Am. Ceram. Soc. PROG PHOTOVOLTAICS Small Small Methods Acta Mater. Appl. Surf. Sci. Carbon Ceram. Int. Compos. Sci. Technol. Corros. Sci. CURR OPIN SOLID ST M Dyes Pigm. Electrochim. Acta Energy Storage Mater. FlatChem Intermetallics Int. J. Plast. Joule J. Alloys Compd. J. Cryst. Growth J. Magn. Magn. Mater. J. Mater. Process. Technol. Mater. Des. Mater. Lett. Mater. Today Matter Microporous Mesoporous Mater. Nano Energy Nano Today Particuology Prog. Cryst. Growth Charact. Mater. Prog. Mater Sci. Scr. Mater. Sol. Energy Mater. Sol. Cells Solid State Ionics Adv. Fiber Mater. Appl. Compos. Mater. Bull. Mater. Sci. Carbon Lett. Cellulose Crystallogr. Rep. Electron. Mater. Lett. Eur. J. Wood Wood Prod. Fashion Text. Fibers Polym. Front. Mater. Sci. Glass Ceram. Glass Phys. Chem Inorg. Mater. Int. J. Mater. Form. Int. J. Mech. Mater. Des. JOM-US J. Coat. Technol. Res. J. Electroceram. J. Mater. Eng. Perform. J. Mater. Sci. J. Nanopart. Res. J. Nondestr. Eval. J PHASE EQUILIB DIFF J. Porous Mater. J. Sol-Gel Sci. Technol. J. Superhard Mater. J. Aust. Ceram. Soc. J. Therm. Spray Technol. MECH TIME-DEPEND MAT Met. Sci. Heat Treat. METALLURGIST+ Met. Mater. Int. Nano Convergence Nano Res. Nano-Micro Lett. Oxid. Met. Phys. Mesomech. Powder Metall. Met. Ceram. Prot. Met. Phys. Chem Rare Met. Refract. Ind. Ceram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1