Pub Date : 2025-12-01Epub Date: 2025-01-10DOI: 10.1080/10495398.2024.2446251
Nitesh Kumar Sharma, Prashant Singh, Bibek Saha, Anuradha Bhardwaj, Mir Asif Iquebal, Yash Pal, Varij Nayan, Sarika Jaiswal, Shiv Kumar Giri, Ram Avatar Legha, T K Bhattacharya, Dinesh Kumar, Anil Rai
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, namely, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom™ Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters. A total of 2668 autosomal CNVs and 381 CNV regions (CNVRs) were identified with PennCNV tool. DeepCNV was employed to re-validate to get 883 autosomal CNVs, of which 9.06% were singleton type. A total of 180 CNVRs were identified after DeepCNV filtering with the estimated length of 3.12 Kb-4.90 Mb. The functional analysis showed the majority of the CNVRs genes enriched for sensory perception and olfactory receptor activity. An Equine CNVs database, EqCNVdb (http://backlin.cabgrid.res.in/eqcnvdb/) was developed which catalogues detailed information on the horse CNVs, CNVRs and gene content within CNVRs. Also, three random CNVRs were validated with real-time polymerase chain reaction. These findings will aid in the understanding the horse genome and serve as a preliminary foundation for future CNV association research with commercially significant equine traits. The identification of CNVs and CNVRs would lead to better insights into genetic basis of important traits.
{"title":"Genome wide landscaping of copy number variations for horse inter-breed variability.","authors":"Nitesh Kumar Sharma, Prashant Singh, Bibek Saha, Anuradha Bhardwaj, Mir Asif Iquebal, Yash Pal, Varij Nayan, Sarika Jaiswal, Shiv Kumar Giri, Ram Avatar Legha, T K Bhattacharya, Dinesh Kumar, Anil Rai","doi":"10.1080/10495398.2024.2446251","DOIUrl":"https://doi.org/10.1080/10495398.2024.2446251","url":null,"abstract":"<p><p>Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, <i>namely,</i> Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom<sup>™</sup> Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters. A total of 2668 autosomal CNVs and 381 CNV regions (CNVRs) were identified with PennCNV tool. DeepCNV was employed to re-validate to get 883 autosomal CNVs, of which 9.06% were singleton type. A total of 180 CNVRs were identified after DeepCNV filtering with the estimated length of 3.12 Kb-4.90 Mb. The functional analysis showed the majority of the CNVRs genes enriched for sensory perception and olfactory receptor activity. An Equine CNVs database, EqCNVdb (http://backlin.cabgrid.res.in/eqcnvdb/) was developed which catalogues detailed information on the horse CNVs, CNVRs and gene content within CNVRs. Also, three random CNVRs were validated with real-time polymerase chain reaction. These findings will aid in the understanding the horse genome and serve as a preliminary foundation for future CNV association research with commercially significant equine traits. The identification of CNVs and CNVRs would lead to better insights into genetic basis of important traits.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2446251"},"PeriodicalIF":1.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-10DOI: 10.1080/01652176.2025.2450041
Dimitri Bassalo, Stephen G Matthews, Enrrico Bloise
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the ABCB1/MDR1 gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the ABCB1/MDR1 gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics. The review also covers factors that may disrupt the canine BBB, including the actions of aging, canine cognitive dysfunction, epilepsy, inflammation, infection, traumatic brain injury, among others. We highlight the critical importance of this barrier in maintaining central nervous system homeostasis and protecting against xenobiotics and conclude that a number of neurological-related diseases may increase vulnerability of the BBB in the canine species and discuss its profound impacts on canine health.
{"title":"The canine blood-brain barrier in health and disease: focus on brain protection.","authors":"Dimitri Bassalo, Stephen G Matthews, Enrrico Bloise","doi":"10.1080/01652176.2025.2450041","DOIUrl":"10.1080/01652176.2025.2450041","url":null,"abstract":"<p><p>This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the <i>ABCB1/MDR1</i> gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the <i>ABCB1/MDR1</i> gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics. The review also covers factors that may disrupt the canine BBB, including the actions of aging, canine cognitive dysfunction, epilepsy, inflammation, infection, traumatic brain injury, among others. We highlight the critical importance of this barrier in maintaining central nervous system homeostasis and protecting against xenobiotics and conclude that a number of neurological-related diseases may increase vulnerability of the BBB in the canine species and discuss its profound impacts on canine health.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"12-32"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-02DOI: 10.1080/01652176.2024.2447601
Laurens Van Mulders, Ellen Vanden Broecke, Ellen De Paepe, Femke Mortier, Lynn Vanhaecke, Sylvie Daminet
Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats (n = 94) and healthy controls (n = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Significant disruptions were detected in tryptophan (indole, kynurenine, serotonin), tyrosine, and carnitine metabolism, as well as in the urea cycle. Circulating gut-derived uremic toxins, including indoxyl-sulfate, p-cresyl-sulfate, and trimethylamine-N-oxide, were markedly increased, primarily due to impaired renal excretion. However, alternative mechanisms, such as enhanced bacterial formation from dietary precursors like tryptophan, tyrosine, carnitine, and betaine, could not be ruled out. Overall, the findings suggest that metabolic disturbances in feline CKD are largely driven by the accumulation of gut-derived uremic toxins derived from precursors highly abundant in the feline diet. These insights may link the strict carnivorous nature of felines to CKD pathophysiology and highlight potential avenues for studying preventive or therapeutic interventions.
{"title":"Metabolomics reveals alterations in gut-derived uremic toxins and tryptophan metabolism in feline chronic kidney disease.","authors":"Laurens Van Mulders, Ellen Vanden Broecke, Ellen De Paepe, Femke Mortier, Lynn Vanhaecke, Sylvie Daminet","doi":"10.1080/01652176.2024.2447601","DOIUrl":"https://doi.org/10.1080/01652176.2024.2447601","url":null,"abstract":"<p><p>Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats (<i>n</i> = 94) and healthy controls (<i>n</i> = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Significant disruptions were detected in tryptophan (indole, kynurenine, serotonin), tyrosine, and carnitine metabolism, as well as in the urea cycle. Circulating gut-derived uremic toxins, including indoxyl-sulfate, p-cresyl-sulfate, and trimethylamine-N-oxide, were markedly increased, primarily due to impaired renal excretion. However, alternative mechanisms, such as enhanced bacterial formation from dietary precursors like tryptophan, tyrosine, carnitine, and betaine, could not be ruled out. Overall, the findings suggest that metabolic disturbances in feline CKD are largely driven by the accumulation of gut-derived uremic toxins derived from precursors highly abundant in the feline diet. These insights may link the strict carnivorous nature of felines to CKD pathophysiology and highlight potential avenues for studying preventive or therapeutic interventions.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"1-15"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study was to investigate the polymorphism and genetic correlation of INSL3 and WNT2B genes with seasonal estrus and litter size in three different Xinjiang sheep breeds. The genetic diversity of INSL3 and WNT2B genes were analyzed, and their association with litter size and estrous traits were analyzed. The results showed that two SNPs (SNP1, SNP2) were detected in INSL3 gene and there were three genotypes in SNP2 (INSL3 (A100T)), named of AA, AT and TT, A was the dominant allele. Additionally, five SNPs (SNP3, SNP4, SNP5, SNP6, SNP7) were detected in the WNT2B gene and there were three genotypes in SNP4 (WNT2B (G126T)), named GG, GT and TT, G was dominant allele. SNP2 was in Hardy-Weinberg equilibrium in three sheep breeds (P > 0.05). SNP4 was deviated from Hardy-Weinberg equilibrium in three sheep breeds (P < 0.05). Further, AT genotype of SNP2 (INSL3 (A100T)) could significantly affect the estrus trait in Duolang sheep and Qira black sheep, and related to the litter size in Duolang sheep. The WNT2B significantly affected the estrus and litter size of Duolang sheep and Qira black sheep. INSL3 (A100T) and WNT2B (G126T) may be potential molecular markers for controlling seasonal reproductive trait in sheep.
{"title":"Effects of <i>INSL3</i> and <i>WNT2B</i> gene polymorphisms on seasonal reproductive traits of Xinjiang Qira black sheep, Kazakh sheep and Duolang sheep.","authors":"Jingdong Bi, Sulaiman Yiming, Jiaqi Li, Quanfeng Wang, Manjun Zhai, Shaoqi Cao, Mengting Zhu, Hua Yang","doi":"10.1080/10495398.2025.2498677","DOIUrl":"https://doi.org/10.1080/10495398.2025.2498677","url":null,"abstract":"<p><p>The purpose of this study was to investigate the polymorphism and genetic correlation of <i>INSL3</i> and <i>WNT2B</i> genes with seasonal estrus and litter size in three different Xinjiang sheep breeds. The genetic diversity of <i>INSL3</i> and <i>WNT2B</i> genes were analyzed, and their association with litter size and estrous traits were analyzed. The results showed that two SNPs (SNP1, SNP2) were detected in <i>INSL3</i> gene and there were three genotypes in SNP2 (<i>INSL3</i> (A100T)), named of AA, AT and TT, A was the dominant allele. Additionally, five SNPs (SNP3, SNP4, SNP5, SNP6, SNP7) were detected in the <i>WNT2B</i> gene and there were three genotypes in SNP4 (<i>WNT2B</i> (G126T)), named GG, GT and TT, G was dominant allele. SNP2 was in Hardy-Weinberg equilibrium in three sheep breeds (<i>P</i> > 0.05). SNP4 was deviated from Hardy-Weinberg equilibrium in three sheep breeds (<i>P</i> < 0.05). Further, AT genotype of SNP2 (<i>INSL3</i> (A100T)) could significantly affect the estrus trait in Duolang sheep and Qira black sheep, and related to the litter size in Duolang sheep. The <i>WNT2B</i> significantly affected the estrus and litter size of Duolang sheep and Qira black sheep. <i>INSL3</i> (A100T) and <i>WNT2B</i> (G126T) may be potential molecular markers for controlling seasonal reproductive trait in sheep.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2498677"},"PeriodicalIF":1.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ex situ conservation is an important wildlife conservation strategy, but endangered wildlife in captivity often exhibit high disease rates. Commensal microorganisms are vital for homeostasis, immunity, and linked to diseases. This study analyzed the structure, assembly, variations of the symbiotic microbiota of the endangered crocodile lizard, and their relationship with environment, as well as the effects of captivity on them, to explore why captive reptiles face high dermatosis rates. Results showed that the reptile's microbiota significantly differ from that of its habitat, demonstrating niche specificity. While species richness among organs showed no significant differences, microbial diversity varied considerably. Skin microbiota showed no site-specific clustering. The assembly of skin, oral, and intestinal bacterial communities was dominated by homogeneous selection. The gut and oral bacterial networks were resilient to disturbances, while the skin bacterial network was sensitive. Captivity primarily affected the skin microbiota, reducing its diversity and stability, thereby increasing disease risk, and these effects were not solely attributable to environmental changes. These findings suggested that skin microbial changes in captive reptiles may be responsible for their increased susceptibility to dermatosis in ex situ conservation. This study underscored the importance of understanding reptile-associated microbes for effective conservation strategies and offers potential solutions.
{"title":"Effects of ex situ conservation on commensal bacteria of crocodile lizard and conservation implications.","authors":"Haiying Jiang, Mei Lv, Tengfei He, Mujiao Xie, Zhiwen Zhao, Jiasong He, Shuyi Luo, Yide Guo, Jinping Chen","doi":"10.1080/01652176.2025.2463704","DOIUrl":"10.1080/01652176.2025.2463704","url":null,"abstract":"<p><p>Ex situ conservation is an important wildlife conservation strategy, but endangered wildlife in captivity often exhibit high disease rates. Commensal microorganisms are vital for homeostasis, immunity, and linked to diseases. This study analyzed the structure, assembly, variations of the symbiotic microbiota of the endangered crocodile lizard, and their relationship with environment, as well as the effects of captivity on them, to explore why captive reptiles face high dermatosis rates. Results showed that the reptile's microbiota significantly differ from that of its habitat, demonstrating niche specificity. While species richness among organs showed no significant differences, microbial diversity varied considerably. Skin microbiota showed no site-specific clustering. The assembly of skin, oral, and intestinal bacterial communities was dominated by homogeneous selection. The gut and oral bacterial networks were resilient to disturbances, while the skin bacterial network was sensitive. Captivity primarily affected the skin microbiota, reducing its diversity and stability, thereby increasing disease risk, and these effects were not solely attributable to environmental changes. These findings suggested that skin microbial changes in captive reptiles may be responsible for their increased susceptibility to dermatosis in ex situ conservation. This study underscored the importance of understanding reptile-associated microbes for effective conservation strategies and offers potential solutions.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"1-14"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816626/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143392500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Copy number variations (CNV) are important genetic variations. The endogenous factors cobalamin receptor (CUBN) and MIA SH3 domain ER-derived factor 3 (MIA3) are associated with bone/muscle development and intramuscular fat deposition. There have been no reports on the effects of CUBN and MIA3 CNVs on growth traits of Chinese cattle. This study aimed to determine the correlation between the CUBN and MIA3 CNVs and growth traits in Chinese cattle. qRT-PCR was used to detect the distribution of CUBN and MIA3 CNV and the expression levels of their mRNA, and correlation analysis was conducted between CNV and growth traits. The CUBN was differentially expressed in different breeds of cattle, and CUBN CNV correlated significantly with body height, hip height, body slanting length, and hip width of Grassland Red cattle (CYH); eye muscle area of Yanbian cattle (YB) and Yan Yellow cattle (YH). MIA3 showed no CNV in CYH and YB cattle, and only one deletion type occurred in YH cattle. CUBN and MIA3 mRNA have different expression patterns in different cattle breeds and tissues. In conclusion, CUBN CNV is correlated significantly with growth traits in Chinese cattle and is a novel molecular marker that could be exploited in cattle breeding.
{"title":"Relationship between the <i>CUBN</i> and the <i>MIA3</i> gene copy number variation and growth traits in different cattle breeds.","authors":"Yue Han, Jiwei Liu, Congcong Zhang, Ming Sun, Xuanyu Li, Hongliang Liu, Shengnan Li, Yongchao Zhu, Ruidong Li, Xiaotong Luo, Yumin Zhao, Jian Wu","doi":"10.1080/10495398.2025.2450355","DOIUrl":"10.1080/10495398.2025.2450355","url":null,"abstract":"<p><p>Copy number variations (CNV) are important genetic variations. The endogenous factors cobalamin receptor (<i>CUBN</i>) and MIA SH3 domain ER-derived factor 3 (<i>MIA3</i>) are associated with bone/muscle development and intramuscular fat deposition. There have been no reports on the effects of <i>CUBN</i> and <i>MIA3</i> CNVs on growth traits of Chinese cattle. This study aimed to determine the correlation between the <i>CUBN</i> and <i>MIA3</i> CNVs and growth traits in Chinese cattle. qRT-PCR was used to detect the distribution of <i>CUBN</i> and <i>MIA3</i> CNV and the expression levels of their mRNA, and correlation analysis was conducted between CNV and growth traits. The <i>CUBN</i> was differentially expressed in different breeds of cattle, and <i>CUBN</i> CNV correlated significantly with body height, hip height, body slanting length, and hip width of Grassland Red cattle (CYH); eye muscle area of Yanbian cattle (YB) and Yan Yellow cattle (YH). <i>MIA3</i> showed no CNV in CYH and YB cattle, and only one deletion type occurred in YH cattle. <i>CUBN</i> and <i>MIA3</i> mRNA have different expression patterns in different cattle breeds and tissues. In conclusion, <i>CUBN</i> CNV is correlated significantly with growth traits in Chinese cattle and is a novel molecular marker that could be exploited in cattle breeding.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2450355"},"PeriodicalIF":1.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-08DOI: 10.1080/01652176.2024.2449082
Parin Watcharavongtip, Patumporn Jermsutjarit, Angkana Tantituvanont, Dachrit Nilubol
Senecavirus A (SVA) is the causative agent associated with porcine idiopathic vesicular disease (PIVD), a condition indistinguishable from other foreign vesicular diseases affecting pigs. This complicates differential diagnosis and impacts the global swine industry. A diagnostic ELISA based on a non-structural viral protein has been developed, capable of distinguishing infected from vaccinated animals (DIVA). Different expression systems (eukaryotic and prokaryotic) were used to express recombinant proteins. The baculovirus-expressed SVA 3AB DIVA ELISA demonstrated a sensitivity of 96.67% and specificity of 96.67%. In contrast, the E. coli-expressed SVA 3AB DIVA ELISA achieved 100% sensitivity and 93.33% specificity. Both ELISAs strongly correlated with the reference method and showed no cross-reactivity with other pig pathogens. The E. coli system also provided a higher yield of expressed protein than the baculovirus system. These findings indicate that SVA DIVA ELISAs are effective alternatives for detecting SVA antibodies. They can be valuable tools for sero-surveillance and for evaluating immunity status tests to support and approve vaccination programs for pig herds in the future.
{"title":"Development of a differentiating of infected from vaccinated animal (DIVA) ELISA to detect antibodies against Senecavirus A in pigs using two expression systems of non-structural proteins.","authors":"Parin Watcharavongtip, Patumporn Jermsutjarit, Angkana Tantituvanont, Dachrit Nilubol","doi":"10.1080/01652176.2024.2449082","DOIUrl":"10.1080/01652176.2024.2449082","url":null,"abstract":"<p><p>Senecavirus A (SVA) is the causative agent associated with porcine idiopathic vesicular disease (PIVD), a condition indistinguishable from other foreign vesicular diseases affecting pigs. This complicates differential diagnosis and impacts the global swine industry. A diagnostic ELISA based on a non-structural viral protein has been developed, capable of distinguishing infected from vaccinated animals (DIVA). Different expression systems (eukaryotic and prokaryotic) were used to express recombinant proteins. The baculovirus-expressed SVA 3AB DIVA ELISA demonstrated a sensitivity of 96.67% and specificity of 96.67%. In contrast, the <i>E. coli</i>-expressed SVA 3AB DIVA ELISA achieved 100% sensitivity and 93.33% specificity. Both ELISAs strongly correlated with the reference method and showed no cross-reactivity with other pig pathogens. The <i>E. coli</i> system also provided a higher yield of expressed protein than the baculovirus system. These findings indicate that SVA DIVA ELISAs are effective alternatives for detecting SVA antibodies. They can be valuable tools for sero-surveillance and for evaluating immunity status tests to support and approve vaccination programs for pig herds in the future.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"1-11"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since their emergence in Guangdong, China, in 1996, Gs/GD H5 highly pathogenic avian influenza viruses (HPAIVs) have diversified into multiple clades, spreading globally through wild bird migrations and causing substantial losses in poultry and wildlife. In South Korea, HPAIVs, including H5N1, H5N8, and H5N6 subtypes, have been repeatedly introduced since 2003. This review examines the epidemiology, genetic characteristics, and pathobiological features of these viruses in South Korea. Outbreaks typically occur between October and December, aligning with the arrival of wintering migratory birds. While outbreaks in poultry farms dominated before 2018, wild bird cases became more prevalent in subsequent years. Seasonal outbreaks in poultry have declined, but large-scale mortality events in wild birds emerged biennially from 2020. Genotypic diversity has increased since 2014 due to reassortment with low pathogenic viruses, with novel genomic traits detected in recent seasons. Infection studies show consistently fatal outcomes in chickens, while high mortality in domestic ducks was observed only with two of the studied strains, despite efficient transmission. Wild bird studies reveal species-specific roles in viral shedding and transmission. This review underscores the dynamic nature of HPAI outbreaks, highlighting the importance of surveillance, biosecurity, and genetic and pathogenicity analyses to mitigate future risks.
{"title":"Epidemiology and pathobiology of H5Nx highly pathogenic avian influenza in South Korea (2003-2024): a comprehensive review.","authors":"Sun-Hak Lee, Jung-Hoon Kwon, Sungsu Youk, Sang-Won Lee, Dong-Hun Lee, Chang-Seon Song","doi":"10.1080/01652176.2025.2498918","DOIUrl":"https://doi.org/10.1080/01652176.2025.2498918","url":null,"abstract":"<p><p>Since their emergence in Guangdong, China, in 1996, Gs/GD H5 highly pathogenic avian influenza viruses (HPAIVs) have diversified into multiple clades, spreading globally through wild bird migrations and causing substantial losses in poultry and wildlife. In South Korea, HPAIVs, including H5N1, H5N8, and H5N6 subtypes, have been repeatedly introduced since 2003. This review examines the epidemiology, genetic characteristics, and pathobiological features of these viruses in South Korea. Outbreaks typically occur between October and December, aligning with the arrival of wintering migratory birds. While outbreaks in poultry farms dominated before 2018, wild bird cases became more prevalent in subsequent years. Seasonal outbreaks in poultry have declined, but large-scale mortality events in wild birds emerged biennially from 2020. Genotypic diversity has increased since 2014 due to reassortment with low pathogenic viruses, with novel genomic traits detected in recent seasons. Infection studies show consistently fatal outcomes in chickens, while high mortality in domestic ducks was observed only with two of the studied strains, despite efficient transmission. Wild bird studies reveal species-specific roles in viral shedding and transmission. This review underscores the dynamic nature of HPAI outbreaks, highlighting the importance of surveillance, biosecurity, and genetic and pathogenicity analyses to mitigate future risks.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"23-38"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144057144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-03-20DOI: 10.1080/10495398.2025.2479677
Na-Yeon Gu, Gwang Sik Ryu, Gyu-Nam Park, Ju-Yeon Lee, Yun Sang Cho, Dong-Kun Yang, Hye Jeong Lee
Mesenchymal stem cells (MSCs) can self-renew and differentiate into several lineages and can be isolated from different tissues such as bone marrow, adipose tissue, umbilical cord blood, and muscle. Herein, we established MSCs derived from miniature pig muscle (MpMu-MSCs) and assessed their response to Aujeszky's virus. We characterized the MpMu-MSCs based on their cellular morphology, proliferation properties, cell surface marker expression, and mesodermal differentiation potential. MpMu-MSCs demonstrated a fibroblast-like spindle shape and formed a homogeneous monolayer. They showed a considerable increase in cell proliferation over 16 passages. The cells expressed surface markers CD29, CD44, CD90, and CD105 and demonstrated mesodermal lineage differentiation capabilities. MpMu-MSCs demonstrated faster cytopathic effects than the Vero cells when infected with Aujeszky's virus. The virus titer in MpMu-MSCs was initiated at 101.4 TCID50/ml at 12 h post-infection (hpi) and increased to 106.6 TCID50/ml at 72 hpi. In Vero cells, it was initiated at 102.3 TCID50/ml at 48 hpi and increased to 103.8 TCID50/ml at 72 hpi. This study showed that the stem cells procured from miniature pig muscles exhibit MSC characteristics and that the established cells demonstrate higher susceptibility and virus titer to Aujeszky's virus than Vero cells, indicating their potential use in virus research.
{"title":"Enhanced susceptibility of porcine muscle-derived mesenchymal stem cells to Aujeszky's virus compared Vero cells.","authors":"Na-Yeon Gu, Gwang Sik Ryu, Gyu-Nam Park, Ju-Yeon Lee, Yun Sang Cho, Dong-Kun Yang, Hye Jeong Lee","doi":"10.1080/10495398.2025.2479677","DOIUrl":"10.1080/10495398.2025.2479677","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) can self-renew and differentiate into several lineages and can be isolated from different tissues such as bone marrow, adipose tissue, umbilical cord blood, and muscle. Herein, we established MSCs derived from miniature pig muscle (MpMu-MSCs) and assessed their response to Aujeszky's virus. We characterized the MpMu-MSCs based on their cellular morphology, proliferation properties, cell surface marker expression, and mesodermal differentiation potential. MpMu-MSCs demonstrated a fibroblast-like spindle shape and formed a homogeneous monolayer. They showed a considerable increase in cell proliferation over 16 passages. The cells expressed surface markers CD29, CD44, CD90, and CD105 and demonstrated mesodermal lineage differentiation capabilities. MpMu-MSCs demonstrated faster cytopathic effects than the Vero cells when infected with Aujeszky's virus. The virus titer in MpMu-MSCs was initiated at 10<sup>1.4</sup> TCID<sub>50</sub>/ml at 12 h post-infection (hpi) and increased to 10<sup>6.6</sup> TCID<sub>50</sub>/ml at 72 hpi. In Vero cells, it was initiated at 10<sup>2.3</sup> TCID<sub>50</sub>/ml at 48 hpi and increased to 10<sup>3.8</sup> TCID<sub>50</sub>/ml at 72 hpi. This study showed that the stem cells procured from miniature pig muscles exhibit MSC characteristics and that the established cells demonstrate higher susceptibility and virus titer to Aujeszky's virus than Vero cells, indicating their potential use in virus research.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2479677"},"PeriodicalIF":1.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-04-10DOI: 10.1080/01652176.2025.2485480
Siyuan Jia, Andrea R McWhorter, Samiullah Khan, Daniel M Andrews, Gregory J Underwood, Kapil K Chousalkar
In this study, a commercially available Salmonella Typhimurium vaccine (Vaxsafe ST) reconstituted in either water or nutrient broth, was tested to understand its effects on the in vitro invasion of Caco-2 cells and its transcriptional regulation post-reconstitution. Over time, the invasiveness of Vaxsafe ST was significantly higher following reconstitution in nutrient broth compared with water. Incubation temperature post-reconstitution did not significantly affect the invasion rate. Transcriptome data showed that Vaxsafe ST reconstituted in nutrient broth upregulated genes involved in the two-component system and flagella activity pathways; however, genes involved in host colonization and invasion were unaltered. Genes involved in host colonization and invasion were downregulated after reconstitution in water. Vaxsafe ST reconstituted in a nutritive diluent improved the metabolic activities of the vaccine. The animal experiment demonstrated that vaccine colonization was significantly higher in caeca compared with ileum irrespective of the diluent. Incubating the vaccine in nutrient broth for 30 min before administration did not significantly increase its colonization or organ invasion in chicks. Overall, the findings support the use of nutritive media for the reconstitution of Vaxsafe ST, warranting further investigation to optimize vaccine performance. This study provides a foundation for future work on vaccine reconstitution strategies.
{"title":"<i>In vitro and in vivo</i> study on the effects of nutritive media compared with water on the resuscitation of a live attenuated <i>Salmonella</i> Typhimurium vaccine.","authors":"Siyuan Jia, Andrea R McWhorter, Samiullah Khan, Daniel M Andrews, Gregory J Underwood, Kapil K Chousalkar","doi":"10.1080/01652176.2025.2485480","DOIUrl":"https://doi.org/10.1080/01652176.2025.2485480","url":null,"abstract":"<p><p>In this study, a commercially available <i>Salmonella</i> Typhimurium vaccine (Vaxsafe ST) reconstituted in either water or nutrient broth, was tested to understand its effects on the <i>in vitro</i> invasion of Caco-2 cells and its transcriptional regulation post-reconstitution. Over time, the invasiveness of Vaxsafe ST was significantly higher following reconstitution in nutrient broth compared with water. Incubation temperature post-reconstitution did not significantly affect the invasion rate. Transcriptome data showed that Vaxsafe ST reconstituted in nutrient broth upregulated genes involved in the two-component system and flagella activity pathways; however, genes involved in host colonization and invasion were unaltered. Genes involved in host colonization and invasion were downregulated after reconstitution in water. Vaxsafe ST reconstituted in a nutritive diluent improved the metabolic activities of the vaccine. The animal experiment demonstrated that vaccine colonization was significantly higher in caeca compared with ileum irrespective of the diluent. Incubating the vaccine in nutrient broth for 30 min before administration did not significantly increase its colonization or organ invasion in chicks. Overall, the findings support the use of nutritive media for the reconstitution of Vaxsafe ST, warranting further investigation to optimize vaccine performance. This study provides a foundation for future work on vaccine reconstitution strategies.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"45 1","pages":"1-10"},"PeriodicalIF":7.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144059051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}