Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
{"title":"Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges.","authors":"Yun Liang Zhang, Shuang Jiao Sun, Li Zeng","doi":"10.1039/d4fo03618b","DOIUrl":"https://doi.org/10.1039/d4fo03618b","url":null,"abstract":"<p><p>Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinay Venkatesh Varada, Sachin Kumar, Sravani Balaga, Antony Johnson Thanippilly, Heartwin A Pushpadass, Rashmi H M, Babu Lal Jangir, Nitin Tyagi, Ashish Kumar Samanta
The current study aimed to evaluate the effects of L. plantarum CRD7 on performance and gut health biomarkers in a Swiss albino mouse model. The results showed that supplementation with non-encapsulated (NLP) and electrohydrodyanamically encapsulated L. plantarum CRD7 (ELP) for four weeks significantly increased (P < 0.05) body weight and weekly feed intake of mice. Specifically, these interventions strengthened the gut barrier functions, as evidenced by the increased expression of tight junction proteins (claudin-1, ZO-1, and occludin), inhibiting pro-inflammatory factors (TNF-α, MCP-1, and IL-6), and promoting short-chain fatty acid production. Histopathological examination revealed no probiotic-related adverse effects in liver and intestinal tissues. Furthermore, ELP and NLP possess the ability to regulate immunity and antioxidant capacity in mice. Notably, the supplementation of ELP modified the gut microbiota by promoting beneficial bacteria (Lactobacillus and Bifibacterium) and suppressing pathogenic bacteria (E. coli and C. perfringens), thereby restoring a balanced gut microbiota. Taken together, oral delivery of encapsulated L. plantarum CRD7 can modify the composition of the gut microbiota, fortify the intestinal barrier functions, maintain the gastrointestinal equilibrium, and augment the immune and antioxidant capacity. This comprehensive study provides valuable insights for the potential application of encapsulated probiotic products in food and feed formulations aimed at alleviating gut diseases.
本研究旨在评估植物乳杆菌CRD7对瑞士白化小鼠模型的表现和肠道健康生物标志物的影响。结果显示,连续四周补充非胶囊化(NLP)和电解水囊化 L. plantarum CRD7(ELP)可显著增加(P < 0.05)小鼠的体重和每周饲料摄入量。具体来说,这些干预措施增强了肠道屏障功能,表现为增加了紧密连接蛋白(claudin-1、ZO-1和occludin)的表达,抑制了促炎因子(TNF-α、MCP-1和IL-6),并促进了短链脂肪酸的产生。组织病理学检查显示,益生菌对肝脏和肠道组织没有不良影响。此外,ELP 和 NLP 还能调节小鼠的免疫力和抗氧化能力。值得注意的是,通过促进有益菌(乳酸杆菌和双歧杆菌)和抑制致病菌(大肠杆菌和产气荚膜杆菌),补充 ELP 改变了肠道微生物群,从而恢复了肠道微生物群的平衡。综上所述,口服封装植物乳杆菌 CRD7 可以改变肠道微生物群的组成,强化肠道屏障功能,维持肠胃平衡,增强免疫和抗氧化能力。这项综合研究为封装益生菌产品在食品和饲料配方中的潜在应用提供了宝贵的见解,旨在缓解肠道疾病。
{"title":"Oral delivery of electrohydrodynamically encapsulated <i>Lactiplantibacillus plantarum</i> CRD7 modulates gut health, antioxidant activity, and cytokines-related inflammation and immunity in mice.","authors":"Vinay Venkatesh Varada, Sachin Kumar, Sravani Balaga, Antony Johnson Thanippilly, Heartwin A Pushpadass, Rashmi H M, Babu Lal Jangir, Nitin Tyagi, Ashish Kumar Samanta","doi":"10.1039/d4fo02732a","DOIUrl":"https://doi.org/10.1039/d4fo02732a","url":null,"abstract":"<p><p>The current study aimed to evaluate the effects of <i>L. plantarum</i> CRD7 on performance and gut health biomarkers in a Swiss albino mouse model. The results showed that supplementation with non-encapsulated (NLP) and electrohydrodyanamically encapsulated <i>L. plantarum</i> CRD7 (ELP) for four weeks significantly increased (<i>P</i> < 0.05) body weight and weekly feed intake of mice. Specifically, these interventions strengthened the gut barrier functions, as evidenced by the increased expression of tight junction proteins (claudin-1, ZO-1, and occludin), inhibiting pro-inflammatory factors (TNF-α, MCP-1, and IL-6), and promoting short-chain fatty acid production. Histopathological examination revealed no probiotic-related adverse effects in liver and intestinal tissues. Furthermore, ELP and NLP possess the ability to regulate immunity and antioxidant capacity in mice. Notably, the supplementation of ELP modified the gut microbiota by promoting beneficial bacteria (<i>Lactobacillus</i> and <i>Bifibacterium</i>) and suppressing pathogenic bacteria (<i>E. coli</i> and <i>C. perfringens</i>), thereby restoring a balanced gut microbiota. Taken together, oral delivery of encapsulated <i>L. plantarum</i> CRD7 can modify the composition of the gut microbiota, fortify the intestinal barrier functions, maintain the gastrointestinal equilibrium, and augment the immune and antioxidant capacity. This comprehensive study provides valuable insights for the potential application of encapsulated probiotic products in food and feed formulations aimed at alleviating gut diseases.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josh Thorley, Abrar Alhebshi, Ana Rodriguez-Mateos, Zicheng Zhang, Stephen J Bailey, Neil R W Martin, Nicolette C Bishop, Tom Clifford
Purpose: Exercise and (poly)phenols may activate nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that coordinates antioxidant synthesis. The purpose of this study was to determine whether curcuminoid supplementation augments resting and exercise-induced NRF2 activity. Methods: In a double-blinded, randomised, between-subjects design, 14 males and 12 females performed plyometric exercise (100 drop jumps, 50 squat jumps) following 4 d supplementation with a curcuminoid-based formulation (CUR + EX; n = 13; ∼200 mg d-1 curcuminoids) or a placebo (PLA + EX; n = 13). NRF2/DNA binding in peripheral blood mononuclear cells, plasma glutathione peroxidase (GPX), and plasma cytokines (interleukin-6 [IL-6], tumour necrosis factor-alpha [TNF-α]) were measured pre-, post-, 1, 2 h post-exercise. Curcuminoid metabolites were measured 0, 1, 2 h post-administration of a single bolus. Results: Total area under the curve for total curcuminoid metabolites was greater in CUR + EX (p < 0.01), with bioavailability peaking at 2 h post administration (CUR + EX: [0 h] 80.9 ± 117 nM [1 h] 76.6 ± 178.5 nM [2 h] 301.1 ± 584.7 nM; PLA + EX: [0 h] 10.4 ± 1.6 [1 h] 8.5 ± 2.6 [2 h] 10.6 ± 2.1). NRF2 activity did not increase in PLA + EX (p = 0.78) or CUR + EX (p = 0.76); however, curcuminoid metabolite concentrations did positively predict NRF2/DNA binding (R2 = 0.39; p = 0.02). Exercise increased IL-6 (p = 0.03) but TNF-α was unresponsive (p = 0.97) and lower across PLA + EX (p = 0.03). GPX activity was higher in CUR + EX (p < 0.01) but not in PLA + EX (p = 0.94). Conclusion: Supplementation with a curcuminoid-based formulation failed to augment resting or exercise-induced NRF2/DNA binding; however, higher concentrations of curcuminoid metabolites predicted NRF2/DNA binding response, suggesting effects may be dependent on bioavailability.
{"title":"Acute supplementation with a curcuminoid-based formulation fails to enhance resting or exercise-induced NRF2 activity in males and females.","authors":"Josh Thorley, Abrar Alhebshi, Ana Rodriguez-Mateos, Zicheng Zhang, Stephen J Bailey, Neil R W Martin, Nicolette C Bishop, Tom Clifford","doi":"10.1039/d4fo02681k","DOIUrl":"https://doi.org/10.1039/d4fo02681k","url":null,"abstract":"<p><p><i>Purpose</i>: Exercise and (poly)phenols may activate nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that coordinates antioxidant synthesis. The purpose of this study was to determine whether curcuminoid supplementation augments resting and exercise-induced NRF2 activity. <i>Methods</i>: In a double-blinded, randomised, between-subjects design, 14 males and 12 females performed plyometric exercise (100 drop jumps, 50 squat jumps) following 4 d supplementation with a curcuminoid-based formulation (CUR + EX; <i>n</i> = 13; ∼200 mg d<sup>-1</sup> curcuminoids) or a placebo (PLA + EX; <i>n</i> = 13). NRF2/DNA binding in peripheral blood mononuclear cells, plasma glutathione peroxidase (GPX), and plasma cytokines (interleukin-6 [IL-6], tumour necrosis factor-alpha [TNF-α]) were measured pre-, post-, 1, 2 h post-exercise. Curcuminoid metabolites were measured 0, 1, 2 h post-administration of a single bolus. <i>Results</i>: Total area under the curve for total curcuminoid metabolites was greater in CUR + EX (<i>p</i> < 0.01), with bioavailability peaking at 2 h post administration (CUR + EX: [0 h] 80.9 ± 117 nM [1 h] 76.6 ± 178.5 nM [2 h] 301.1 ± 584.7 nM; PLA + EX: [0 h] 10.4 ± 1.6 [1 h] 8.5 ± 2.6 [2 h] 10.6 ± 2.1). NRF2 activity did not increase in PLA + EX (<i>p</i> = 0.78) or CUR + EX (<i>p</i> = 0.76); however, curcuminoid metabolite concentrations did positively predict NRF2/DNA binding (<i>R</i><sup>2</sup> = 0.39; <i>p</i> = 0.02). Exercise increased IL-6 (<i>p</i> = 0.03) but TNF-α was unresponsive (<i>p</i> = 0.97) and lower across PLA + EX (<i>p</i> = 0.03). GPX activity was higher in CUR + EX (<i>p</i> < 0.01) but not in PLA + EX (<i>p</i> = 0.94). <i>Conclusion</i>: Supplementation with a curcuminoid-based formulation failed to augment resting or exercise-induced NRF2/DNA binding; however, higher concentrations of curcuminoid metabolites predicted NRF2/DNA binding response, suggesting effects may be dependent on bioavailability.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Probiotics have been reported to exert beneficial effects on sleep through the gut-brain axis. Therefore, this randomized, double-blind, placebo-controlled trial assessed the effects of Lacticaseibacillus paracasei 207-27 supplementation on sleep quality and its safety and potential mechanisms. Method and study design: Healthy adults under mild stress aged 18-35 years consumed low or high doses of L. paracasei 207-27 or a placebo for 28 days. Fecal samples, blood samples, and questionnaires were collected at the baseline and the end of the intervention. Sleep quality was measured using wearable devices and Pittsburgh sleep quality index (PSQI) questionnaire. Serum inflammatory markers, corticotropin-releasing hormone, adrenocorticotropic hormone (ACTH), cortisol (COR), γ-aminobutyric acid, and 5-hydroxytryptamine levels were detected using enzyme-linked immunosorbent assay. The gut microbiota was analyzed using 16S rRNA sequencing and bioinformatics. Short-chain fatty acids levels were detected using gas chromatography-mass spectrometry. Results: Both the low-dose and high-dose groups exhibited significant improvements in wearable device- measured sleep duration compared to the placebo group. The global scores of PSQI in three groups significantly decreased after intervention without statistical difference between groups. At the phylum level, the low-dose group exhibited a higher relative abundance of Bacteroidota and a lower Firmicutes-to-Bacteroidetes (F/B) ratio. At the genus level, two treatment groups had higher relative abundance of Bacteroides and Megamonas, alongside lower levels of Escherichia-Shigella. Furthermore, the low-dose group exhibited significant increases in acetic acid, propionic acid, butyric acid, and valeric acid levels, while two treatment groups exhibited a significant decrease in COR levels. Correlation analysis revealed that the increased levels of acetic acid and butyric acid in the low-dose group may be associated with decreased ACTH. Conclusion: L. paracasei 207-27 administration in healthy adults resulted in improvements in gut microbiota community and sleep duration. The mechanisms might involve modulation of the gut microbiota structure to regulate the function of the gut-brain axis, including increases in SCFA levels and decreases in hypothalamic-pituitary-adrenal axis activity. The Chinese clinical trial registry number is ChiCTR2300069453 (https://www.chictr.org.cn/showproj.html?proj=191193, registered 16 May 2023 - retrospectively registered).
{"title":"<i>Lacticaseibacillus paracasei</i> 207-27 alters the microbiota-gut-brain axis to improve wearable device-measured sleep duration in healthy adults: a randomized, double-blind, placebo-controlled trial.","authors":"Jinxing Li, Jincheng Zhao, Xiaolei Ze, Liang Li, Yapeng Li, Zhimo Zhou, Simou Wu, Wen Jia, Meixun Liu, Yun Li, Xi Shen, Fang He, Ruyue Cheng","doi":"10.1039/d4fo01684j","DOIUrl":"https://doi.org/10.1039/d4fo01684j","url":null,"abstract":"<p><p><i>Objective</i>: Probiotics have been reported to exert beneficial effects on sleep through the gut-brain axis. Therefore, this randomized, double-blind, placebo-controlled trial assessed the effects of <i>Lacticaseibacillus paracasei</i> 207-27 supplementation on sleep quality and its safety and potential mechanisms. <i>Method and study design</i>: Healthy adults under mild stress aged 18-35 years consumed low or high doses of <i>L. paracasei</i> 207-27 or a placebo for 28 days. Fecal samples, blood samples, and questionnaires were collected at the baseline and the end of the intervention. Sleep quality was measured using wearable devices and Pittsburgh sleep quality index (PSQI) questionnaire. Serum inflammatory markers, corticotropin-releasing hormone, adrenocorticotropic hormone (ACTH), cortisol (COR), γ-aminobutyric acid, and 5-hydroxytryptamine levels were detected using enzyme-linked immunosorbent assay. The gut microbiota was analyzed using 16S rRNA sequencing and bioinformatics. Short-chain fatty acids levels were detected using gas chromatography-mass spectrometry. <i>Results</i>: Both the low-dose and high-dose groups exhibited significant improvements in wearable device- measured sleep duration compared to the placebo group. The global scores of PSQI in three groups significantly decreased after intervention without statistical difference between groups. At the phylum level, the low-dose group exhibited a higher relative abundance of <i>Bacteroidota</i> and a lower <i>Firmicutes</i>-to-<i>Bacteroidetes</i> (<i>F</i>/<i>B</i>) ratio. At the genus level, two treatment groups had higher relative abundance of <i>Bacteroides</i> and <i>Megamonas</i>, alongside lower levels of <i>Escherichia-Shigella</i>. Furthermore, the low-dose group exhibited significant increases in acetic acid, propionic acid, butyric acid, and valeric acid levels, while two treatment groups exhibited a significant decrease in COR levels. Correlation analysis revealed that the increased levels of acetic acid and butyric acid in the low-dose group may be associated with decreased ACTH. <i>Conclusion</i>: <i>L. paracasei</i> 207-27 administration in healthy adults resulted in improvements in gut microbiota community and sleep duration. The mechanisms might involve modulation of the gut microbiota structure to regulate the function of the gut-brain axis, including increases in SCFA levels and decreases in hypothalamic-pituitary-adrenal axis activity. The Chinese clinical trial registry number is ChiCTR2300069453 (https://www.chictr.org.cn/showproj.html?proj=191193, registered 16 May 2023 - retrospectively registered).</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Correction for 'A comparative study of the hypolipidemic effects and mechanisms of action of Laminaria japonica- and Ascophyllum nodosum-derived fucoidans in apolipoprotein E-deficient mice' by Tian Liu et al., Food Funct., 2024, 15, 5955-5971, https://doi.org/10.1039/D3FO05521C.
{"title":"Correction: A comparative study of the hypolipidemic effects and mechanisms of action of <i>Laminaria japonica</i>- and <i>Ascophyllum nodosum</i>-derived fucoidans in apolipoprotein E-deficient mice.","authors":"Tian Liu, Xue Wang, Yan-Ming Wang, Feng-Rong Sui, Xue-Ying Zhang, Hai-Di Liu, Dong-Yue Ma, Xiao-Xiao Liu, Shou-Dong Guo","doi":"10.1039/d4fo90102a","DOIUrl":"https://doi.org/10.1039/d4fo90102a","url":null,"abstract":"<p><p>Correction for 'A comparative study of the hypolipidemic effects and mechanisms of action of <i>Laminaria japonica</i>- and <i>Ascophyllum nodosum</i>-derived fucoidans in apolipoprotein E-deficient mice' by Tian Liu <i>et al.</i>, <i>Food Funct.</i>, 2024, <b>15</b>, 5955-5971, https://doi.org/10.1039/D3FO05521C.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheng-Fei Yan, Jia-Yu Chen, Jing Yang, Shuai Yuan, Xue-Yi Qiao, Bo Xu, Ling-Qia Su
Cod protein isolate (CPI), a by-product of the cod processing industry, represents a novel source of high value-added products. However, off-flavors in cod protein such as bitterness and fishy odor reduce its acceptability to consumers. Here, CPI was first debittered using aminopeptidase from Streptomyces canus (ScAPase) and then deodorized through probiotic fermentation. This is the first reported demonstration of complete removal of the bitterness of CPI using ScAPase. Subsequently, Syn3 and Syn4, as aromatic CPI (ACPI), were prepared from debittered CPI (DCPI) via fermentation with Lactobacillus acidophilus and Bifidobacterium longum, respectively. These products, DCPI and ACPI, were characterized by the absence of bitterness and fishy odor, along with a strong aromatic scent and high overall acceptability. Additionally, these products exhibited improved physicochemical properties, including enhanced oil-holding capacity, emulsifying activity, and resistance to digestion, compared to untreated CPI. However, significant differences were observed in their radical scavenging activities. The highest scavenging activity was detected in Syn3 against DPPH˙ (63.5%) and ˙OH (79.2%), in DCPI against O2- (32.0%), and in post-digestion Syn4 against ABTS˙+ (95.2%). Furthermore, after digestion treatment, these products significantly promoted the proliferation of probiotics. Notably post-digestion Syn4 showed the most substantial proliferation effect on Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium breve compared to other post-digestion samples. These results indicate that the treated CPI has the potential for applications in health food products.
{"title":"Enhancement of the flavor and functional characteristics of cod protein isolate using an enzyme-microbe system.","authors":"Zheng-Fei Yan, Jia-Yu Chen, Jing Yang, Shuai Yuan, Xue-Yi Qiao, Bo Xu, Ling-Qia Su","doi":"10.1039/d4fo02272f","DOIUrl":"https://doi.org/10.1039/d4fo02272f","url":null,"abstract":"<p><p>Cod protein isolate (CPI), a by-product of the cod processing industry, represents a novel source of high value-added products. However, off-flavors in cod protein such as bitterness and fishy odor reduce its acceptability to consumers. Here, CPI was first debittered using aminopeptidase from <i>Streptomyces canus</i> (<i>Sc</i>APase) and then deodorized through probiotic fermentation. This is the first reported demonstration of complete removal of the bitterness of CPI using <i>Sc</i>APase. Subsequently, Syn3 and Syn4, as aromatic CPI (ACPI), were prepared from debittered CPI (DCPI) <i>via</i> fermentation with <i>Lactobacillus acidophilus</i> and <i>Bifidobacterium longum</i>, respectively. These products, DCPI and ACPI, were characterized by the absence of bitterness and fishy odor, along with a strong aromatic scent and high overall acceptability. Additionally, these products exhibited improved physicochemical properties, including enhanced oil-holding capacity, emulsifying activity, and resistance to digestion, compared to untreated CPI. However, significant differences were observed in their radical scavenging activities. The highest scavenging activity was detected in Syn3 against DPPH˙ (63.5%) and ˙OH (79.2%), in DCPI against O<sub>2</sub><sup>-</sup> (32.0%), and in post-digestion Syn4 against ABTS˙<sup>+</sup> (95.2%). Furthermore, after digestion treatment, these products significantly promoted the proliferation of probiotics. Notably post-digestion Syn4 showed the most substantial proliferation effect on <i>Lactobacillus reuteri</i>, <i>Lactobacillus rhamnosus</i>, and <i>Bifidobacterium breve</i> compared to other post-digestion samples. These results indicate that the treated CPI has the potential for applications in health food products.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luteolin (LUT), a natural flavonoid known for its hypoglycemic properties, is primarily sourced from vegetables such as celery and broccoli. However, its poor stability and low bioavailability in the upper digestive tract hinder its application in the functional food industry. To address these challenges, this study employed porous starch (PS) as a carrier to develop PS microspheres loaded with luteolin (PSLUT), simulating its release in vitro. The research assessed the hypoglycemic effects of LUT in type 2 diabetes mellitus (T2DM) mice both before and after PS treatment. In vitro findings demonstrated that PS improved LUT's stability in simulated gastric fluids and enhanced its in vivo bioavailability, aligning with experimental outcomes. PSLUT administration significantly improved body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), pancreatic islet function, and other relevant indicators in T2DM mice. Moreover, PSLUT alleviated abnormal liver biochemical indicators and liver tissue injury caused by T2DM. The underlying hypoglycemic mechanism of PSLUT is thought to involve the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). After four weeks of intervention, various PSLUT doses significantly reduced the Firmicutes to Bacteroidetes ratio at the phylum level and decreased the relative abundance of harmful bacteria at the genus level, including Acetatifactor, Candidatus-Arthromitus, and Turicibacter. This microbial shift was associated with improvements in hyperglycemia-related indicators such as FBG, the area under the curve (AUC) of OGTT, and homeostasis model assessment of insulin resistance (HOMA-IR), which are closely linked to these bacterial genera. Additionally, Lachnoclostridium, Parasutterella, Turicibacter, and Papillibacter were identified as key intestinal marker genera involved in T2DM progression through Spearman correlation analysis. In conclusion, PS enhanced LUT's hypoglycemic efficacy by modulating the transcription and protein expression levels of AKT-1 and GLUT-2, as well as the relative abundance of potential gut pathogens in T2DM mice. These results provide a theoretical foundation for advancing luteolin's application in the functional food industry and further investigating its hypoglycemic potential.
{"title":"Porous starch microspheres loaded with luteolin exhibit hypoglycemic activities and alter gut microbial communities in type 2 diabetes mellitus mice.","authors":"Xiaodong Ge, Tingting Liu, Yaolin Wang, Huanhuan Wen, Zirui Huang, Ligen Chen, Jianda Xu, Hongcheng Zhou, Qin Wu, Chao Zhao, Rong Shao, Wei Xu","doi":"10.1039/d4fo02907k","DOIUrl":"https://doi.org/10.1039/d4fo02907k","url":null,"abstract":"<p><p>Luteolin (LUT), a natural flavonoid known for its hypoglycemic properties, is primarily sourced from vegetables such as celery and broccoli. However, its poor stability and low bioavailability in the upper digestive tract hinder its application in the functional food industry. To address these challenges, this study employed porous starch (PS) as a carrier to develop PS microspheres loaded with luteolin (PSLUT), simulating its release <i>in vitro</i>. The research assessed the hypoglycemic effects of LUT in type 2 diabetes mellitus (T2DM) mice both before and after PS treatment. <i>In vitro</i> findings demonstrated that PS improved LUT's stability in simulated gastric fluids and enhanced its <i>in vivo</i> bioavailability, aligning with experimental outcomes. PSLUT administration significantly improved body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), pancreatic islet function, and other relevant indicators in T2DM mice. Moreover, PSLUT alleviated abnormal liver biochemical indicators and liver tissue injury caused by T2DM. The underlying hypoglycemic mechanism of PSLUT is thought to involve the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). After four weeks of intervention, various PSLUT doses significantly reduced the <i>Firmicutes</i> to <i>Bacteroidetes</i> ratio at the phylum level and decreased the relative abundance of harmful bacteria at the genus level, including <i>Acetatifactor</i>, <i>Candidatus-Arthromitus</i>, and <i>Turicibacter</i>. This microbial shift was associated with improvements in hyperglycemia-related indicators such as FBG, the area under the curve (AUC) of OGTT, and homeostasis model assessment of insulin resistance (HOMA-IR), which are closely linked to these bacterial genera. Additionally, <i>Lachnoclostridium</i>, <i>Parasutterella</i>, <i>Turicibacter</i>, and <i>Papillibacter</i> were identified as key intestinal marker genera involved in T2DM progression through Spearman correlation analysis. In conclusion, PS enhanced LUT's hypoglycemic efficacy by modulating the transcription and protein expression levels of AKT-1 and GLUT-2, as well as the relative abundance of potential gut pathogens in T2DM mice. These results provide a theoretical foundation for advancing luteolin's application in the functional food industry and further investigating its hypoglycemic potential.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammatory bowel disease (IBD) poses persistent challenges due to its chronic and recurrent nature, exacerbated by the unsatisfactory outcomes of the traditional treatment approaches. In this study, we developed a dietary supplement, selenium-enriched Pichia kudriavzevii (SeY), to alleviate dextran sulfate sodium-induced colitis in mice. The newly developed functional food shows dual-functional activity, acting both as a probiotic and a reliable source of organic selenium. This study aimed to investigate the preventive effects of SeY against dextran sulfate sodium-induced colitis in mice and elucidate the underlying mechanisms. Results showed that SeY, especially at high doses (HSeY), significantly ameliorated colitis symptoms, reduced colonic damage, attenuated inflammatory responses, and mitigated oxidative stress. Furthermore, HSeY strengthened intestinal barrier function by increasing goblet cell numbers, upregulating MUC2 expression, and enhancing tight junction proteins (ZO-1, claudin-1, and occludin). Additionally, HSeY alleviated gut microbiota dysbiosis by promoting the colonization of beneficial bacteria such as norank-f-Muribaculaceae and Bacteroides, while suppressing harmful microorganisms such as norank-f-norank-o-Clostridia-UCG-014. The altered gut microbiota also affected gut metabolism, with differential metabolites primarily associated with amino acids, such as tryptophan metabolism, contributing to the mitigation of oxidative stress and inflammatory responses. Further studies involving antibiotic-mediated depletion of gut flora and fecal microbiota transfer trials corroborated that the preventive effect of HSeY against IBD relied on the gut microbiota. This study provides vital insights into colitis prevention and advances selenium-enriched fortified food-targeted nutritional interventions.
{"title":"Novel selenium-enriched <i>Pichia kudriavzevii</i> as a dietary supplement to alleviate dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and host metabolism.","authors":"Huijuan Wang, Yue Chen, Zhouli Wang, Yahong Yuan, Tianli Yue","doi":"10.1039/d4fo02598a","DOIUrl":"https://doi.org/10.1039/d4fo02598a","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) poses persistent challenges due to its chronic and recurrent nature, exacerbated by the unsatisfactory outcomes of the traditional treatment approaches. In this study, we developed a dietary supplement, selenium-enriched <i>Pichia kudriavzevii</i> (SeY), to alleviate dextran sulfate sodium-induced colitis in mice. The newly developed functional food shows dual-functional activity, acting both as a probiotic and a reliable source of organic selenium. This study aimed to investigate the preventive effects of SeY against dextran sulfate sodium-induced colitis in mice and elucidate the underlying mechanisms. Results showed that SeY, especially at high doses (HSeY), significantly ameliorated colitis symptoms, reduced colonic damage, attenuated inflammatory responses, and mitigated oxidative stress. Furthermore, HSeY strengthened intestinal barrier function by increasing goblet cell numbers, upregulating MUC2 expression, and enhancing tight junction proteins (ZO-1, claudin-1, and occludin). Additionally, HSeY alleviated gut microbiota dysbiosis by promoting the colonization of beneficial bacteria such as <i>norank-f-Muribaculaceae</i> and <i>Bacteroides</i>, while suppressing harmful microorganisms such as <i>norank-f-norank-o-Clostridia</i>-UCG-014. The altered gut microbiota also affected gut metabolism, with differential metabolites primarily associated with amino acids, such as tryptophan metabolism, contributing to the mitigation of oxidative stress and inflammatory responses. Further studies involving antibiotic-mediated depletion of gut flora and fecal microbiota transfer trials corroborated that the preventive effect of HSeY against IBD relied on the gut microbiota. This study provides vital insights into colitis prevention and advances selenium-enriched fortified food-targeted nutritional interventions.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pan Zhuang, Yang Ao, Xiaohui Liu, Hao Ye, Haoyu Li, Xuzhi Wan, Yu Zhang, Jingjing Jiao
Fatty acid (FA) metabolism plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). However, data on the relationship between circulating FAs and NAFLD risk are limited. This study aims to assess the associations between specific circulating FAs and severe NAFLD risk among the general population. Overall 116 223 participants without NAFLD and other liver diseases from the UK Biobank were enrolled between 2006 and 2010 and were followed up until the end of 2021. Plasma concentrations of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) were analyzed using an NMR-based biomarker profiling platform. Hazard ratios (HRs) and 95% confidence intervals (CIs) of NAFLD risk were estimated using Cox proportional-hazard models adjusted for other potential confounders. During a mean follow-up of 12.3 years, we documented 1394 cases of severe NAFLD. After multivariate adjustment, plasma SFAs and MUFAs were associated with a higher risk of severe NAFLD, whereas plasma n-3 PUFAs, n-6 PUFAs, and linoleic acid (LA) were associated with a lower risk. As compared with the lowest quartile, HRs (95% CIs) of severe NAFLD risk in the highest quartiles were 1.85 (1.45-2.36) for SFAs, 1.74 (1.23-2.44) for MUFAs, 0.79 (0.65-0.97) for n-3 PUFAs, 0.68 (0.48-0.96) for n-6 PUFAs, and 0.73 (0.54-0.99) for LA. The significant relationships were mainly mediated by serum TG for SFAs, HDL-C for MUFAs and n-6 PUFAs, and C-reactive protein for n-3 PUFAs. Plasma SFAs were associated with a more pronounced increase in the risk of severe NAFLD among participants with fewer SFA-associated alleles (P interaction = 0.032). Dietary recommendations for reducing plasma SFAs and MUFAs while increasing n-3 and n-6 PUFAs may be protective for severe NAFLD, which could be mediated by lipid metabolism and inflammation.
{"title":"Circulating fatty acids and risk of severe non-alcoholic fatty liver disease in the UK biobank: a prospective cohort of 116 223 individuals.","authors":"Pan Zhuang, Yang Ao, Xiaohui Liu, Hao Ye, Haoyu Li, Xuzhi Wan, Yu Zhang, Jingjing Jiao","doi":"10.1039/d4fo01182a","DOIUrl":"https://doi.org/10.1039/d4fo01182a","url":null,"abstract":"<p><p>Fatty acid (FA) metabolism plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). However, data on the relationship between circulating FAs and NAFLD risk are limited. This study aims to assess the associations between specific circulating FAs and severe NAFLD risk among the general population. Overall 116 223 participants without NAFLD and other liver diseases from the UK Biobank were enrolled between 2006 and 2010 and were followed up until the end of 2021. Plasma concentrations of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) were analyzed using an NMR-based biomarker profiling platform. Hazard ratios (HRs) and 95% confidence intervals (CIs) of NAFLD risk were estimated using Cox proportional-hazard models adjusted for other potential confounders. During a mean follow-up of 12.3 years, we documented 1394 cases of severe NAFLD. After multivariate adjustment, plasma SFAs and MUFAs were associated with a higher risk of severe NAFLD, whereas plasma n-3 PUFAs, n-6 PUFAs, and linoleic acid (LA) were associated with a lower risk. As compared with the lowest quartile, HRs (95% CIs) of severe NAFLD risk in the highest quartiles were 1.85 (1.45-2.36) for SFAs, 1.74 (1.23-2.44) for MUFAs, 0.79 (0.65-0.97) for n-3 PUFAs, 0.68 (0.48-0.96) for n-6 PUFAs, and 0.73 (0.54-0.99) for LA. The significant relationships were mainly mediated by serum TG for SFAs, HDL-C for MUFAs and n-6 PUFAs, and C-reactive protein for n-3 PUFAs. Plasma SFAs were associated with a more pronounced increase in the risk of severe NAFLD among participants with fewer SFA-associated alleles (<i>P</i> interaction = 0.032). Dietary recommendations for reducing plasma SFAs and MUFAs while increasing n-3 and n-6 PUFAs may be protective for severe NAFLD, which could be mediated by lipid metabolism and inflammation.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eugenol, a phenylpropanoid compound, is found in various dietary resources and medicinal plants. From a historical perspective, eugenol is widely employed as a flavoring agent in the food and fragrance industries. Here, this review mainly focuses on recent advances in eugenol with respect to its versatile physiological roles in health and disease and discusses the mechanisms. Emerging evidence has highlighted that eugenol exhibits multiple biological activities in cancer, diabetes, obesity, cardiovascular diseases, and neurodegenerative diseases. It also has analgesic, anti-inflammatory, and antioxidant qualities and has lethal or inhibiting effects on various viruses, bacteria, fungi, and parasites. The manuscript also contains some patents that have been filed thus far regarding the production and application of eugenol. Overall, these benefits make eugenol a promising nutritional supplement which fulfils its historical function as a flavoring agent, opening up new possibilities for the creation of therapeutic agents for the treatment of disease.
{"title":"Beyond flavor: the versatile roles of eugenol in health and disease.","authors":"Yujie Lao, Jingya Guo, Jingjing Fang, Ruixuan Geng, Mengjie Li, Yige Qin, Jiayi Wu, Seong-Gook Kang, Kunlun Huang, Tao Tong","doi":"10.1039/d4fo02428a","DOIUrl":"https://doi.org/10.1039/d4fo02428a","url":null,"abstract":"<p><p>Eugenol, a phenylpropanoid compound, is found in various dietary resources and medicinal plants. From a historical perspective, eugenol is widely employed as a flavoring agent in the food and fragrance industries. Here, this review mainly focuses on recent advances in eugenol with respect to its versatile physiological roles in health and disease and discusses the mechanisms. Emerging evidence has highlighted that eugenol exhibits multiple biological activities in cancer, diabetes, obesity, cardiovascular diseases, and neurodegenerative diseases. It also has analgesic, anti-inflammatory, and antioxidant qualities and has lethal or inhibiting effects on various viruses, bacteria, fungi, and parasites. The manuscript also contains some patents that have been filed thus far regarding the production and application of eugenol. Overall, these benefits make eugenol a promising nutritional supplement which fulfils its historical function as a flavoring agent, opening up new possibilities for the creation of therapeutic agents for the treatment of disease.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}