Pub Date : 2024-10-15DOI: 10.1007/s10874-024-09463-0
Khatereh Anbari, Pierre Sicard, Yusef Omidi Khaniabadi, Hasan Raja Naqvi, Reza Fouladi Fard, Rajab Rashidi
High levels of particulate matters in the air are a major health issue in Middle East leading to adverse health effects. In this study, we have simultaneously investigated (i) the spatio-temporal distribution of ambient particulate matters in a city located in the Middle East (Khorramabad) over the time period 2021–2022; and (ii) PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment to exposure. For the risk assessment, hourly PM2.5 and PM10 data were obtained from three monitoring stations located in the city. A methodology for risk assessment recommended by the United State Environmental Protection Agency was used for all age groups. The excess lifetime cancer risk (ELCR) and the hazard quotient (HQ) were estimated, and the backward trajectories were assessed by the Hybrid Single-Particle Lagrangian Integrated Trajectory model. The Aerosol Optical Depth from 0 to 1000 nm was applied to observe the variations of atmospheric aerosols. The results showed that the annual PM2.5 and PM10 mean concentrations during 2021 and 2022 were exceeded the World Health Organization limit value for human health protection. In 2021 and 2022, 2.2-148.3 and 1.3-134.4 cancers per 1,000,000 inhabitants can be related to ambient PM2.5 exposure. The HQ values for PM2.5 and PM10 were 4.7 and 1.3 in 2021, and 3.8 and 1.1 in 2022, i.e., the risk for human health is expected. To reduce the adverse health effects related to particulate matters, air emissions control strategies are required.
{"title":"PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran","authors":"Khatereh Anbari, Pierre Sicard, Yusef Omidi Khaniabadi, Hasan Raja Naqvi, Reza Fouladi Fard, Rajab Rashidi","doi":"10.1007/s10874-024-09463-0","DOIUrl":"10.1007/s10874-024-09463-0","url":null,"abstract":"<div><p>High levels of particulate matters in the air are a major health issue in Middle East leading to adverse health effects. In this study, we have simultaneously investigated (i) the spatio-temporal distribution of ambient particulate matters in a city located in the Middle East (Khorramabad) over the time period 2021–2022; and (ii) PM<sub>2.5</sub> and PM<sub>10</sub>-related carcinogenic and non-carcinogenic risk assessment to exposure. For the risk assessment, hourly PM<sub>2.5</sub> and PM<sub>10</sub> data were obtained from three monitoring stations located in the city. A methodology for risk assessment recommended by the United State Environmental Protection Agency was used for all age groups. The excess lifetime cancer risk (ELCR) and the hazard quotient (HQ) were estimated, and the backward trajectories were assessed by the Hybrid Single-Particle Lagrangian Integrated Trajectory model. The Aerosol Optical Depth from 0 to 1000 nm was applied to observe the variations of atmospheric aerosols. The results showed that the annual PM<sub>2.5</sub> and PM<sub>10</sub> mean concentrations during 2021 and 2022 were exceeded the World Health Organization limit value for human health protection. In 2021 and 2022, 2.2-148.3 and 1.3-134.4 cancers per 1,000,000 inhabitants can be related to ambient PM<sub>2.5</sub> exposure. The HQ values for PM<sub>2.5</sub> and PM<sub>10</sub> were 4.7 and 1.3 in 2021, and 3.8 and 1.1 in 2022, i.e., the risk for human health is expected. To reduce the adverse health effects related to particulate matters, air emissions control strategies are required.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The composition of aerosols influenced by regional pollution sources during a post-monsoon haze event was studied including the isotopic, bulk, and molecular signatures. The air mass back trajectory and fire spot analysis revealed that the Delhi aerosols were influenced by the regional post-harvest crop (rice plant) residue-burning activities during the sampling period. To better understand the atmospheric processes during such an event, three samples of 4 h duration each (Period I: from 06:00–10:00, Period II: 10:00–14:00, and Period III: 14:00–18:00 h local time) were collected during the sampling period (8th -17th November, 2019) in the daytime. The average mass concentration of PM2.5, molecular compounds including the inorganic and carbonaceous components (dicarboxylic acid class compounds), along with the stable isotopes of C and N were observed to be elevated during Period I of the study. NH4+ and SO42− were found to be the most abundant inorganic ions during Period II and III with Cl− being the dominant ion during Period I. The OC/EC, WSOC/EC ratios indicated the influence of biomass burning on Delhi aerosols with little influence of local ageing processes evident from the minimal variation observed between the three periods of study during the day. High concentrations of dicarboxylic acids than previous studies are reported with oxalic and succinic acid being the most abundant diacids, a typical behaviour observed in biomass-burning influenced aerosols with an interesting observation of terephthalic acid to be found in an appreciable amount. The δ15 N of TN and δ13 C of TC signatures clearly indicated the influence of emissions from the burning of a C3 plant on the aerosols. The results strongly suggested that the aerosols were influenced by biomass-burning activities in the neighbouring regions and were aged during the atmospheric transport over to the city of Delhi with minimal effect of local ageing processes during the study period.
研究了季风后雾霾事件期间受区域污染源影响的气溶胶组成,包括同位素、体积和分子特征。气团回溯轨迹和火点分析表明,在采样期间,德里气溶胶受到了区域收获后作物(水稻)残留物焚烧活动的影响。为了更好地了解此类活动期间的大气过程,在采样期间(2019 年 11 月 8 日至 17 日)的白天采集了三个样本,每个样本持续 4 小时(期间 I:当地时间 06:00-10:00;期间 II:当地时间 10:00-14:00;期间 III:当地时间 14:00-18:00)。在研究期间 I,观察到 PM2.5、分子化合物(包括无机和碳质成分(二羧酸类化合物))以及 C 和 N 的稳定同位素的平均质量浓度升高。研究发现,NH4+ 和 SO42- 是周期 II 和 III 中含量最高的无机离子,而 Cl- 则是周期 I 中的主要离子。OC/EC、WSOC/EC 比率表明生物质燃烧对德里气溶胶的影响,从白天三个研究时段之间的最小变化可以看出,当地老化过程的影响很小。与之前的研究相比,报告中二羧酸的浓度较高,草酸和琥珀酸是含量最高的二元酸,这是生物质燃烧影响气溶胶中观察到的典型行为,有趣的是还发现了相当数量的对苯二甲酸。TN 的 δ15 N 和 TC 的 δ13 C 标志清楚地表明了 C3 植物燃烧排放物对气溶胶的影响。研究结果强烈表明,气溶胶受到邻近地区生物质燃烧活动的影响,并在向德里市的大气传输过程中被老化,研究期间当地老化过程的影响微乎其微。
{"title":"Stable isotopic, bulk, and molecular compositions of post-monsoon biomass-burning aerosols in Delhi suggest photochemical ageing during regional transport is more pronounced than local processing","authors":"Rishu Agarwal, Shankar Gopala Aggarwal, Bhagawati Kunwar, Dhananjay Kumar Deshmukh, Khem Singh, Daya Soni, Kimitaka Kawamura","doi":"10.1007/s10874-024-09461-2","DOIUrl":"10.1007/s10874-024-09461-2","url":null,"abstract":"<div><p>The composition of aerosols influenced by regional pollution sources during a post-monsoon haze event was studied including the isotopic, bulk, and molecular signatures. The air mass back trajectory and fire spot analysis revealed that the Delhi aerosols were influenced by the regional post-harvest crop (rice plant) residue-burning activities during the sampling period. To better understand the atmospheric processes during such an event, three samples of 4 h duration each (Period I: from 06:00–10:00, Period II: 10:00–14:00, and Period III: 14:00–18:00 h local time) were collected during the sampling period (8th -17th November, 2019) in the daytime. The average mass concentration of PM<sub>2.5</sub>, molecular compounds including the inorganic and carbonaceous components (dicarboxylic acid class compounds), along with the stable isotopes of C and N were observed to be elevated during Period I of the study. NH<sub>4</sub><sup>+</sup> and SO<sub>4</sub><sup>2−</sup> were found to be the most abundant inorganic ions during Period II and III with Cl<sup>−</sup> being the dominant ion during Period I. The OC/EC, WSOC/EC ratios indicated the influence of biomass burning on Delhi aerosols with little influence of local ageing processes evident from the minimal variation observed between the three periods of study during the day. High concentrations of dicarboxylic acids than previous studies are reported with oxalic and succinic acid being the most abundant diacids, a typical behaviour observed in biomass-burning influenced aerosols with an interesting observation of terephthalic acid to be found in an appreciable amount. The δ<sup>15</sup> N of TN and δ<sup>13</sup> C of TC signatures clearly indicated the influence of emissions from the burning of a C3 plant on the aerosols. The results strongly suggested that the aerosols were influenced by biomass-burning activities in the neighbouring regions and were aged during the atmospheric transport over to the city of Delhi with minimal effect of local ageing processes during the study period.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we have reported spatial and temporal variation in particulate matter (PM), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3) over five provincial capital cities in northwestern China during 2013–2020. Regarding the seasonal variation, all pollutants (except ozone) exhibited the lowest concentration during summer and the highest concentration during winter, which could be attributed to increased anthropogenic activities (like coal burning) and conducive meteorological features. The highest monthly mean concentrations were primarily observed during December-February, whereas ozone exhibited the highest concentration during April-August, with different cities experiencing the highest concentration during different seasons. Regarding the diurnal variation exhibited by the pollutants, the lowest concentration of pollutants (except O3) was observed during the late afternoon (17:00–18:00) period. Ozone posed the urban site diurnal variation characteristic (peak during afternoon hour) over all sites. Urumqi had the highest PM2.5/PM10 ratio during November-March and the lowest ratio during April-October. Compared to the WHO revised guideline, the annual mean PM2.5 concentration was about 8–12 times higher, whereas the annual PM10 concentration was exceeded by a factor of up to 7. Most pollutants exhibited reduced concentration during the spring festival period. Analysis using HYSPLIT back trajectories indicated that the air masses affecting the five sites primarily originated from the northwestern area of China, although the impact of long-range pollution transport from remote regions should not be overlooked.
{"title":"Characteristics of surface air quality over provincial capital cities in Northwestern China during 2013–2020","authors":"Dipesh Rupakheti, Sushma Dhital, Maheswar Rupakheti, Xiufeng Yin, Ping Li, Sishir Dahal, Benzhong Zhang","doi":"10.1007/s10874-024-09462-1","DOIUrl":"10.1007/s10874-024-09462-1","url":null,"abstract":"<div><p>In this study, we have reported spatial and temporal variation in particulate matter (PM), sulfur dioxide (SO<sub>2</sub>), nitrogen dioxide (NO<sub>2</sub>), carbon monoxide (CO) and ozone (O<sub>3</sub>) over five provincial capital cities in northwestern China during 2013–2020. Regarding the seasonal variation, all pollutants (except ozone) exhibited the lowest concentration during summer and the highest concentration during winter, which could be attributed to increased anthropogenic activities (like coal burning) and conducive meteorological features. The highest monthly mean concentrations were primarily observed during December-February, whereas ozone exhibited the highest concentration during April-August, with different cities experiencing the highest concentration during different seasons. Regarding the diurnal variation exhibited by the pollutants, the lowest concentration of pollutants (except O<sub>3</sub>) was observed during the late afternoon (17:00–18:00) period. Ozone posed the urban site diurnal variation characteristic (peak during afternoon hour) over all sites. Urumqi had the highest PM<sub>2.5</sub>/PM<sub>10</sub> ratio during November-March and the lowest ratio during April-October. Compared to the WHO revised guideline, the annual mean PM<sub>2.5</sub> concentration was about 8–12 times higher, whereas the annual PM<sub>10</sub> concentration was exceeded by a factor of up to 7. Most pollutants exhibited reduced concentration during the spring festival period. Analysis using HYSPLIT back trajectories indicated that the air masses affecting the five sites primarily originated from the northwestern area of China, although the impact of long-range pollution transport from remote regions should not be overlooked.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1007/s10874-024-09460-3
Kalpana Rajouriya, Atar Singh Pipal, Ajay Taneja
Sequential Extraction Procedure (SEP) is a method widely used to extract metals and metalloids from Particulate Matter (PM) based on their solubility in different reaction media. This extraction procedure is used to determine the actual mobility of metals present in the environment. A detailed discussion on the significance of sequential extraction analysis is also being given in this scientific document. This review includes different aspects related to the fractions obtained (exchangeable: F1, reducible: F2, oxidizable: F3, bound to organic matter: F4, and residual fraction: F5) during the SEP. The use of each reagent involved in the fractionation process of PM is also discussed briefly. Finally, the present up-to-date information given by different researchers in various fields of atmospheric chemistry along with the possible future developments is also part of this scientific review. The current review also focuses on the relation between SEP and mathematical expressions (bioavailability, source apportionment, and health risk assessment by the USEPA method). It is revealed from the previous studies that Cd and Zn are highly enriched, mobile as well as highly bioavailable in the environment and poses more risk to the human being. The Cr and As showed carcinogenic nature and hence pose carcinogenic diseases in humans. Whereas, Mn and As are non-carcinogenic in nature for children and adults and thereby both pose a non-carcinogenic disease threat to the population.
{"title":"A review on sequential extraction of metals bound particulate matter and their health risk assessment","authors":"Kalpana Rajouriya, Atar Singh Pipal, Ajay Taneja","doi":"10.1007/s10874-024-09460-3","DOIUrl":"10.1007/s10874-024-09460-3","url":null,"abstract":"<div><p>Sequential Extraction Procedure (SEP) is a method widely used to extract metals and metalloids from Particulate Matter (PM) based on their solubility in different reaction media. This extraction procedure is used to determine the actual mobility of metals present in the environment. A detailed discussion on the significance of sequential extraction analysis is also being given in this scientific document. This review includes different aspects related to the fractions obtained (exchangeable: F1, reducible: F2, oxidizable: F3, bound to organic matter: F4, and residual fraction: F5) during the SEP. The use of each reagent involved in the fractionation process of PM is also discussed briefly. Finally, the present up-to-date information given by different researchers in various fields of atmospheric chemistry along with the possible future developments is also part of this scientific review. The current review also focuses on the relation between SEP and mathematical expressions (bioavailability, source apportionment, and health risk assessment by the USEPA method). It is revealed from the previous studies that Cd and Zn are highly enriched, mobile as well as highly bioavailable in the environment and poses more risk to the human being. The Cr and As showed carcinogenic nature and hence pose carcinogenic diseases in humans. Whereas, Mn and As are non-carcinogenic in nature for children and adults and thereby both pose a non-carcinogenic disease threat to the population.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.1007/s10874-024-09458-x
Mohd Arif, Saloni Sachdeva, Sherry Mangla, Prafulla Kumar Sahoo
India, one of the most dynamic ancient civilizations, possesses a multitude of historical artifacts, with 37 of its notable architectural structures recognized as UNESCO World Heritage Sites. Yet, the ever-changing climate, especially air pollution, expedites the natural deterioration of historic sites and diminishes their aesthetic appeal, causing socio-economic damage. With this in mind, the current study aims to offer a logical scientific foundation for the implications of air pollution, seasonal shifts, and COVID-19 on 14 significant historical places in India during the year 2019-20. Delhi, among the cities most severely affected by atmospheric pollution, recorded an alarming air quality index (AQI) of 102–141, which can intensify the risk of cultural sites to corrode and deteriorate. Analysis reveals that the winter season had elevated levels of NO2 and particle pollution (PM2.5, PM10), whereas summer had the higher levels of O3. Throughout the 5-month lockdown period, ozone levels exhibited an elevation, contrasting with the reduction observed in other air parameters. Notably, there was a substantial 70% decrease in particulate matter concentration, which had previously remained stable over the course of the year. Variations in geographic locales and anthropogenic influences contribute significantly to the dose-response statistics, revealing an unprecedented elevation in corrosion risks to historical limestone and sandstone structures across target sites. Moreover, the research addresses available Governmental initiatives, and effective strategies designed to safeguard heritage sites against the corrosion and material degradation, offering a comprehensive exploration of protective measures. Thereby, the current research is centred on establishing a foundational understanding of the impact of air pollution on cultural heritage, utilizing a comparison to the year with the lowest air pollution levels, which can aid policymakers in enhancing risk management and implementing a robust national mandate for the preservation of cultural heritage sites against corrosion.
{"title":"India’s cultural heritage: Air quality effects amidst COVID-19 lockdown and seasonal variability","authors":"Mohd Arif, Saloni Sachdeva, Sherry Mangla, Prafulla Kumar Sahoo","doi":"10.1007/s10874-024-09458-x","DOIUrl":"10.1007/s10874-024-09458-x","url":null,"abstract":"<div><p>India, one of the most dynamic ancient civilizations, possesses a multitude of historical artifacts, with 37 of its notable architectural structures recognized as UNESCO World Heritage Sites. Yet, the ever-changing climate, especially air pollution, expedites the natural deterioration of historic sites and diminishes their aesthetic appeal, causing socio-economic damage. With this in mind, the current study aims to offer a logical scientific foundation for the implications of air pollution, seasonal shifts, and COVID-19 on 14 significant historical places in India during the year 2019-20. Delhi, among the cities most severely affected by atmospheric pollution, recorded an alarming air quality index (AQI) of 102–141, which can intensify the risk of cultural sites to corrode and deteriorate. Analysis reveals that the winter season had elevated levels of NO<sub>2</sub> and particle pollution (PM<sub>2.5</sub>, PM<sub>10</sub>), whereas summer had the higher levels of O<sub>3</sub>. Throughout the 5-month lockdown period, ozone levels exhibited an elevation, contrasting with the reduction observed in other air parameters. Notably, there was a substantial 70% decrease in particulate matter concentration, which had previously remained stable over the course of the year. Variations in geographic locales and anthropogenic influences contribute significantly to the dose-response statistics, revealing an unprecedented elevation in corrosion risks to historical limestone and sandstone structures across target sites. Moreover, the research addresses available Governmental initiatives, and effective strategies designed to safeguard heritage sites against the corrosion and material degradation, offering a comprehensive exploration of protective measures. Thereby, the current research is centred on establishing a foundational understanding of the impact of air pollution on cultural heritage, utilizing a comparison to the year with the lowest air pollution levels, which can aid policymakers in enhancing risk management and implementing a robust national mandate for the preservation of cultural heritage sites against corrosion.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1007/s10874-024-09457-y
A.T.M. Mustafa Kamal, Md. Safiqul Islam, Shahid Uz Zaman, Md. Jalil Miah, Tanvir Ahmed, Sirajul Hoque, Abdus Salam
Five atmospheric trace gases were measured in Dhaka, Bangladesh, using an automated direct sensing gas monitoring system. The average concentrations of CO, NO, NO2, TVOC, and O3 were 2603.6 ± 1216.4, 281.5 ± 158.0, 182.7 ± 69.4, 10,068.2 ± 5296.1 and 36.6 ± 23.6 µg/m3. The measured trace gas concentrations demonstrated significant seasonal and monthly fluctuations, with NO and CO concentrations being the highest in winter, O3 and TVOC concentrations being the highest during the monsoon season, and NO2 concentrations being the highest during the pre-monsoon season. Air mass trajectories and wind rose plots during the monsoon were compared to the winter. It showed that air masses from the southeast and south had an impact on the quantity of most of the trace gases whilst they traveled over the Bay of Bengal throughout the monsoon period. In contrast, air masses from the northwestern region, north, and the west had a bigger effect on the rising amount of trace gases across the Indo Gangetic Plain (IGP) during the winter season. NO2 (182.7 µg/m3) had the maximum concentration of the gases measured and crossed the World Health Organization’s (WHO) annual recommended value. The source characteristics of NOx, TVCO, and O3 gases were determined using the positive matrix factorization (PMF 5.0) model. The combustion of fossil fuels and aerosols were found to be the major sources of NOx and O3, with aerosol formation being the primary source of TVOC concentration.
{"title":"Quantification and source apportionment of atmospheric trace gases over Dhaka, Bangladesh","authors":"A.T.M. Mustafa Kamal, Md. Safiqul Islam, Shahid Uz Zaman, Md. Jalil Miah, Tanvir Ahmed, Sirajul Hoque, Abdus Salam","doi":"10.1007/s10874-024-09457-y","DOIUrl":"10.1007/s10874-024-09457-y","url":null,"abstract":"<div><p>Five atmospheric trace gases were measured in Dhaka, Bangladesh, using an automated direct sensing gas monitoring system. The average concentrations of CO, NO, NO<sub>2</sub>, TVOC, and O<sub>3</sub> were 2603.6 ± 1216.4, 281.5 ± 158.0, 182.7 ± 69.4, 10,068.2 ± 5296.1 and 36.6 ± 23.6 µg/m<sup>3</sup>. The measured trace gas concentrations demonstrated significant seasonal and monthly fluctuations, with NO and CO concentrations being the highest in winter, O<sub>3</sub> and TVOC concentrations being the highest during the monsoon season, and NO<sub>2</sub> concentrations being the highest during the pre-monsoon season. Air mass trajectories and wind rose plots during the monsoon were compared to the winter. It showed that air masses from the southeast and south had an impact on the quantity of most of the trace gases whilst they traveled over the Bay of Bengal throughout the monsoon period. In contrast, air masses from the northwestern region, north, and the west had a bigger effect on the rising amount of trace gases across the Indo Gangetic Plain (IGP) during the winter season. NO<sub>2</sub> (182.7 µg/m<sup>3</sup>) had the maximum concentration of the gases measured and crossed the World Health Organization’s (WHO) annual recommended value. The source characteristics of NOx, TVCO, and O<sub>3</sub> gases were determined using the positive matrix factorization (PMF 5.0) model. The combustion of fossil fuels and aerosols were found to be the major sources of NOx and O<sub>3</sub>, with aerosol formation being the primary source of TVOC concentration.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.1007/s10874-023-09454-7
Roholah Malekei, Mohammad Hossein Sayadi, Reza Dahmardeh Behrooz, Dimitris G. Kaskaoutis
This study investigates the concentrations and spatial distribution of toxic heavy metals (Cd, Cu, Pb and Zn) through chemical analysis of rainwater samples collected in Tehran, Iran during winter and spring of 2022, characterized by different land use, emission sources, traffic conditions and population density. The average concentrations of the examined heavy metals at the five sampling sites were 52.9, 11.8, 14.6 and 0.93 μg l−1 for Zn, Pb, Cu and Cd, respectively. The concentrations of all heavy metals were significantly higher (p < 0.05) at the sampling points in central and south Tehran compared to sites in the west and north, due to different urban characteristics, higher pollution emission rates from the traffic and domestic sectors, and local wind patterns developed within the city. High traffic load in the central part of Tehran also escalates the heavy metal concentrations in this region. The significant correlations between the examined heavy metals at the five sites indicate common, local anthropogenic sources. The heavy metal concentrations were higher for rain samples collected in spring than in winter, likely associated with dilution processes in winter and the restriction measures due to COVID-19 pandemic. During the lockdown period, a drastic decrease in traffic load was observed in Tehran, confirming that motor vehicles is the main regulatory factor for air pollution and potential toxic elements in the city.
{"title":"Toxic heavy metals in rainwater samples of Tehran","authors":"Roholah Malekei, Mohammad Hossein Sayadi, Reza Dahmardeh Behrooz, Dimitris G. Kaskaoutis","doi":"10.1007/s10874-023-09454-7","DOIUrl":"10.1007/s10874-023-09454-7","url":null,"abstract":"<div><p>This study investigates the concentrations and spatial distribution of toxic heavy metals (Cd, Cu, Pb and Zn) through chemical analysis of rainwater samples collected in Tehran, Iran during winter and spring of 2022, characterized by different land use, emission sources, traffic conditions and population density. The average concentrations of the examined heavy metals at the five sampling sites were 52.9, 11.8, 14.6 and 0.93 μg l<sup>−1</sup> for Zn, Pb, Cu and Cd, respectively. The concentrations of all heavy metals were significantly higher (<i>p</i> < 0.05) at the sampling points in central and south Tehran compared to sites in the west and north, due to different urban characteristics, higher pollution emission rates from the traffic and domestic sectors, and local wind patterns developed within the city. High traffic load in the central part of Tehran also escalates the heavy metal concentrations in this region. The significant correlations between the examined heavy metals at the five sites indicate common, local anthropogenic sources. The heavy metal concentrations were higher for rain samples collected in spring than in winter, likely associated with dilution processes in winter and the restriction measures due to COVID-19 pandemic. During the lockdown period, a drastic decrease in traffic load was observed in Tehran, confirming that motor vehicles is the main regulatory factor for air pollution and potential toxic elements in the city.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138947659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-17DOI: 10.1007/s10874-023-09455-6
Abdelfettah Benchrif, Mounia Tahri, Benjamin Guinot, El Mahjoub Chakir, Fatiha Zahry, Bouamar Bagdhad, Moussa Bounakhla, Hélène Cachier
This study investigates the sources and characteristics of PM10 pollution in Tetouan city, Morocco, by employing a combination of chemical mass closure, source-receptor modelling (namely positive matrix factorization, PMF), and air mass trajectory statistical analyses (concentration weighted trajectory, CWT). It provides compelling evidence that using such a combination is a powerful approach for studying the composition and sources of PM10 in the Tetouan region. The PMF analysis identifies four PM10 sources, namely Vehicle Exhaust, Secondary Aerosols, Nitrate + Biomass Burning, and Fresh Sea Salt, with distinct seasonal contributions. CWT analysis reveals the Mediterranean Basin as the primary source region, with influences from populated areas in northern Morocco, southern Europe, and marine emissions. PM10 mass closure highlights the abundance of Dust, Particulate Organic Matter (POM), and Water-Soluble Inorganic Ions (WSI), accounting for the majority of the mass. The low OC/EC ratio advocates that carbonaceous aerosols primarily originate from local traffic emissions. Diagnostic of WSI ratios shows that the [NH4+]/[SO42−] ratio indicated an ammonium-poor environment and suggested an acidic nature of the PM10 aerosols, while the [SO42−]/[NO3−] ratio reflects the combined influence of stationary and mobile sources, with a partial contribution from industrial activities throughout the year. These findings are expected to shed light on the chemical composition, origin of emission sources, and transport pathways of PM10 in the region, contributing to the understanding of air pollution in the south western Mediterranean.
{"title":"Aerosols in Northern Morocco (Part 3): the application of three complementary approaches towards a better understanding of PM10 sources","authors":"Abdelfettah Benchrif, Mounia Tahri, Benjamin Guinot, El Mahjoub Chakir, Fatiha Zahry, Bouamar Bagdhad, Moussa Bounakhla, Hélène Cachier","doi":"10.1007/s10874-023-09455-6","DOIUrl":"10.1007/s10874-023-09455-6","url":null,"abstract":"<div><p>This study investigates the sources and characteristics of PM<sub>10</sub> pollution in Tetouan city, Morocco, by employing a combination of chemical mass closure, source-receptor modelling (namely positive matrix factorization, PMF), and air mass trajectory statistical analyses (concentration weighted trajectory, CWT). It provides compelling evidence that using such a combination is a powerful approach for studying the composition and sources of PM<sub>10</sub> in the Tetouan region. The PMF analysis identifies four PM<sub>10</sub> sources, namely Vehicle Exhaust, Secondary Aerosols, Nitrate + Biomass Burning, and Fresh Sea Salt, with distinct seasonal contributions. CWT analysis reveals the Mediterranean Basin as the primary source region, with influences from populated areas in northern Morocco, southern Europe, and marine emissions. PM<sub>10</sub> mass closure highlights the abundance of Dust, Particulate Organic Matter (POM), and Water-Soluble Inorganic Ions (WSI), accounting for the majority of the mass. The low OC/EC ratio advocates that carbonaceous aerosols primarily originate from local traffic emissions. Diagnostic of WSI ratios shows that the [NH<sub>4</sub><sup>+</sup>]/[SO<sub>4</sub><sup>2−</sup>] ratio indicated an ammonium-poor environment and suggested an acidic nature of the PM<sub>10</sub> aerosols, while the [SO<sub>4</sub><sup>2−</sup>]/[NO<sub>3</sub><sup>−</sup>] ratio reflects the combined influence of stationary and mobile sources, with a partial contribution from industrial activities throughout the year. These findings are expected to shed light on the chemical composition, origin of emission sources, and transport pathways of PM<sub>10</sub> in the region, contributing to the understanding of air pollution in the south western Mediterranean.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138714346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study addresses the spatio-temporal variability and plausible sources of criteria air pollutants in the Western Indian city-Ahmedabad. The air pollutants PM10, PM2.5, O3, NO2, SO2, and CO have been analyzed at ten locations in Ahmedabad from 2017 to 2019. The seasonal variability indicates that the air pollutant concentration is highest during winter, followed by pre-monsoon, post-monsoon, and monsoon seasons. The concentration of PM2.5 (59.52 ± 16.68–89.72 ± 20.68) and PM10 (107.25 ± 30.43–176.04 ± 38.34) crosses the National Ambient Air Quality Standards (NAAQS) in all seasons. However, the seasonal difference from winter to pre-monsoon is not highly significant (p > 0.05), indicating that the pollution remains fairly similar during these two seasons. The spatial variability of air pollutants over Ahmedabad indicates that the concentration is highest in the south and central region of Ahmedabad and lowest at the east location. The Ventilation Coefficient (VC) has been used to understand the dispersion of air pollutants. The K-means clustering was performed to assess the locations within Ahmedabad with similar air pollutants sources followed by source identification using Principal Component Analysis-Multiple Linear Regression method (PCA-MLR) of 5 clusters. The different locations identified were industrial, residential, and traffic which mainly contribute to the air pollutants in Ahmedabad city. The health risk assessment indicates PMs are the leading pollutant and causing excess risk (ER > 1) at all the locations. With the help of the different statistical techniques, it helps in ascertaining the hotspots of air pollution in a region which will be beneficial in studying health exposure and for policymakers to adopt mitigation strategies.
{"title":"Spatio-temporal variability and possible source identification of criteria pollutants from Ahmedabad-a megacity of Western India","authors":"Shahana Bano, Vrinda Anand, Ritesh Kalbande, Gufran Beig, Devendra Singh Rathore","doi":"10.1007/s10874-023-09456-5","DOIUrl":"10.1007/s10874-023-09456-5","url":null,"abstract":"<div><p>This study addresses the spatio-temporal variability and plausible sources of criteria air pollutants in the Western Indian city-Ahmedabad. The air pollutants PM<sub>10</sub>, PM<sub>2.5</sub>, O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2,</sub> and CO have been analyzed at ten locations in Ahmedabad from 2017 to 2019. The seasonal variability indicates that the air pollutant concentration is highest during winter, followed by pre-monsoon, post-monsoon, and monsoon seasons. The concentration of PM<sub>2.5</sub> (59.52 ± 16.68–89.72 ± 20.68) and PM<sub>10</sub> (107.25 ± 30.43–176.04 ± 38.34) crosses the National Ambient Air Quality Standards (NAAQS) in all seasons. However, the seasonal difference from winter to pre-monsoon is not highly significant (p > 0.05), indicating that the pollution remains fairly similar during these two seasons. The spatial variability of air pollutants over Ahmedabad indicates that the concentration is highest in the south and central region of Ahmedabad and lowest at the east location. The Ventilation Coefficient (VC) has been used to understand the dispersion of air pollutants. The K-means clustering was performed to assess the locations within Ahmedabad with similar air pollutants sources followed by source identification using Principal Component Analysis-Multiple Linear Regression method (PCA-MLR) of 5 clusters. The different locations identified were industrial, residential, and traffic which mainly contribute to the air pollutants in Ahmedabad city. The health risk assessment indicates PMs are the leading pollutant and causing excess risk (ER > 1) at all the locations. With the help of the different statistical techniques, it helps in ascertaining the hotspots of air pollution in a region which will be beneficial in studying health exposure and for policymakers to adopt mitigation strategies.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138631151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}