Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23010
E. Schauble
{"title":"Nuclear volume isotope fractionation of europium and other lanthanide elements","authors":"E. Schauble","doi":"10.2343/geochemj.gj23010","DOIUrl":"https://doi.org/10.2343/geochemj.gj23010","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86338963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23011
T. Miyazaki, K. Yasukawa, E. Tanaka, B. Vaglarov, Kenta Yoshida
{"title":"Ba stable isotope excursions induced by multiple hyperthermal events: A potential new index for transient global warming","authors":"T. Miyazaki, K. Yasukawa, E. Tanaka, B. Vaglarov, Kenta Yoshida","doi":"10.2343/geochemj.gj23011","DOIUrl":"https://doi.org/10.2343/geochemj.gj23011","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90423379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23001
Taehwan Kim, Mi Jung Lee
{"title":"U-Pb ages and REE compositions of zircon in megacrystic phengite-bearing quartz vein from the Lanterman Range, northern Victoria Land, Antarctica","authors":"Taehwan Kim, Mi Jung Lee","doi":"10.2343/geochemj.gj23001","DOIUrl":"https://doi.org/10.2343/geochemj.gj23001","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78183906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23005
Hui Lan, U. Tsunogai, F. Nakagawa, Masanori Ito, Ryo Shingubara, Y. Miyoshi, Shuichi Hara
{"title":"Tracing the sources of excess methane in Ise and Mikawa bays using dual stable isotopes as tracers","authors":"Hui Lan, U. Tsunogai, F. Nakagawa, Masanori Ito, Ryo Shingubara, Y. Miyoshi, Shuichi Hara","doi":"10.2343/geochemj.gj23005","DOIUrl":"https://doi.org/10.2343/geochemj.gj23005","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88566845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23013
Ryuta Ueki, Linjie Zheng, S. Takano, Y. Sohrin
{"title":"Distributions of zirconium, niobium, hafnium, and tantalum in the subarctic North Pacific Ocean revisited with a refined analytical method","authors":"Ryuta Ueki, Linjie Zheng, S. Takano, Y. Sohrin","doi":"10.2343/geochemj.gj23013","DOIUrl":"https://doi.org/10.2343/geochemj.gj23013","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87577161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23014
Kazuya Miyakawa, Koki Kashiwaya, Yuto Komura, Kotaro Nakata
Low groundwater flow is essential in impeding radionuclide migration in the geological disposal of high-level radioactive waste (HLW). In the deep subsurface of thick marine sediments, groundwater may actually be ancient seawater altered during deposition and burial, termed “fossil seawater” in this study. In such cases, groundwater flow is extremely slow because it is not affected by infiltration of meteoric water, even after uplift and erosion of strata. Fossil seawater is often found in the deeper parts of the Neogene marine sedimentary Koetoi and Wakkanai Formations of the Tempoku Basin, Horonobe, northern Hokkaido, Japan. Groundwater dating using Cl isotopes and He concentration indicates that this fossil seawater may have barely moved since uplift of the area began. To confirm the low-flow nature of fossil seawater, its chemistry in the Horonobe area and burial diagenesis were investigated by numerical modeling, focusing on the effects of dehydration associated with phase transitions of biogenic silica, smectite interlayer water dehydration, and drainage and upwelling through porosity reduction. Results indicate that groundwater with δ18O values of >0‰, δ2H values of −30‰ to −20‰, and Cl− concentrations of ≤80% lower than that of seawater can be formed during burial without mixing with meteoric water. Groundwater formed during burial in the deeper parts of the Koetoi and Wakkanai Formations may thus have been preserved since uplift, confirming that fossil seawater is of extremely low mobility. The results should contribute to understanding the dilution mechanism of porewater in marine sediments and the selection of suitable site for geological disposal of high-level radioactive waste.
{"title":"Evolution of porewater in a Neogene sedimentary formation in the Horonobe area, Hokkaido, Japan: Modeling of burial diagenesis","authors":"Kazuya Miyakawa, Koki Kashiwaya, Yuto Komura, Kotaro Nakata","doi":"10.2343/geochemj.gj23014","DOIUrl":"https://doi.org/10.2343/geochemj.gj23014","url":null,"abstract":"Low groundwater flow is essential in impeding radionuclide migration in the geological disposal of high-level radioactive waste (HLW). In the deep subsurface of thick marine sediments, groundwater may actually be ancient seawater altered during deposition and burial, termed “fossil seawater” in this study. In such cases, groundwater flow is extremely slow because it is not affected by infiltration of meteoric water, even after uplift and erosion of strata. Fossil seawater is often found in the deeper parts of the Neogene marine sedimentary Koetoi and Wakkanai Formations of the Tempoku Basin, Horonobe, northern Hokkaido, Japan. Groundwater dating using Cl isotopes and He concentration indicates that this fossil seawater may have barely moved since uplift of the area began. To confirm the low-flow nature of fossil seawater, its chemistry in the Horonobe area and burial diagenesis were investigated by numerical modeling, focusing on the effects of dehydration associated with phase transitions of biogenic silica, smectite interlayer water dehydration, and drainage and upwelling through porosity reduction. Results indicate that groundwater with δ18O values of >0‰, δ2H values of −30‰ to −20‰, and Cl− concentrations of ≤80% lower than that of seawater can be formed during burial without mixing with meteoric water. Groundwater formed during burial in the deeper parts of the Koetoi and Wakkanai Formations may thus have been preserved since uplift, confirming that fossil seawater is of extremely low mobility. The results should contribute to understanding the dilution mechanism of porewater in marine sediments and the selection of suitable site for geological disposal of high-level radioactive waste.","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135549474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23015
Kanoko Kurihara, Norika Numa, Sota Niki, Mai Akamune, Masaki Nakazato, Shuji Yamashita, Shoichi Itoh, Takafumi Hirata
Elemental and isotopic analyses of individual submicron-sized particles in chondrite matrix were made by an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOF-MS) and a multiple collector-ICP-MS equipped with high-time resolution ion counters (HTR-MC-ICP-MS). The particles were collected from Allende CV3 chondrite through a laser ablation-in-liquid (LAL) technique. Firstly, the abundances for four major elements (Si, Al, Mg, and Fe) were determined on total 6086 particles, indicating that the Allende matrix is a mixture of submicron-sized particles made mainly of olivine, pyroxene, spinel, Fe–Ni sulfide and Fe–Ni metal, consistent with the predicted major constituent minerals by nebular condensation model. The major elemental compositions revealed that Fe–Ni particles are minor components (about 0.3% in number fraction) in the Allende matrix. Then, to estimate the origin of these metallic particles, abundances for Ni and two minor elements (Os and Pt) were measured. Total 10417 particles of Ni–Os–Pt bearing particles were also found in the chondrite matrix. Majority of the particles were enriched in Ni. Os and Pt were present as separated particles, and no particles with presence of both the Os and Pt were found. Finally, with the HTR-MC-ICP-MS technique, 195Pt/194Pt value was measured on total 1545 particles. The resulting 195Pt/194Pt value agreed with the solar composition within analytical uncertainties. This lack in isotopic anomalies of the 195Pt/194Pt can be explained either by majority of the Pt nuggets being produced from uniform reservoir in the solar system or by Pt being isotopically homogenized prior to the formation of the solar nebula.
{"title":"Elemental and Isotopic Signatures of Individual Particles in Chondrite Matrix using Inductively Coupled Plasma Mass Spectrometry","authors":"Kanoko Kurihara, Norika Numa, Sota Niki, Mai Akamune, Masaki Nakazato, Shuji Yamashita, Shoichi Itoh, Takafumi Hirata","doi":"10.2343/geochemj.gj23015","DOIUrl":"https://doi.org/10.2343/geochemj.gj23015","url":null,"abstract":"Elemental and isotopic analyses of individual submicron-sized particles in chondrite matrix were made by an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOF-MS) and a multiple collector-ICP-MS equipped with high-time resolution ion counters (HTR-MC-ICP-MS). The particles were collected from Allende CV3 chondrite through a laser ablation-in-liquid (LAL) technique. Firstly, the abundances for four major elements (Si, Al, Mg, and Fe) were determined on total 6086 particles, indicating that the Allende matrix is a mixture of submicron-sized particles made mainly of olivine, pyroxene, spinel, Fe–Ni sulfide and Fe–Ni metal, consistent with the predicted major constituent minerals by nebular condensation model. The major elemental compositions revealed that Fe–Ni particles are minor components (about 0.3% in number fraction) in the Allende matrix. Then, to estimate the origin of these metallic particles, abundances for Ni and two minor elements (Os and Pt) were measured. Total 10417 particles of Ni–Os–Pt bearing particles were also found in the chondrite matrix. Majority of the particles were enriched in Ni. Os and Pt were present as separated particles, and no particles with presence of both the Os and Pt were found. Finally, with the HTR-MC-ICP-MS technique, 195Pt/194Pt value was measured on total 1545 particles. The resulting 195Pt/194Pt value agreed with the solar composition within analytical uncertainties. This lack in isotopic anomalies of the 195Pt/194Pt can be explained either by majority of the Pt nuggets being produced from uniform reservoir in the solar system or by Pt being isotopically homogenized prior to the formation of the solar nebula.","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135910301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2343/geochemj.gj23009
Asfie Meshesha Nigussie, D. Ayalew, G. Yirgu
{"title":"Petrogenesis of Butajira-Kibet Quaternary Basaltic Rocks; Central Main Ethiopian Rift","authors":"Asfie Meshesha Nigussie, D. Ayalew, G. Yirgu","doi":"10.2343/geochemj.gj23009","DOIUrl":"https://doi.org/10.2343/geochemj.gj23009","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82022599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}