首页 > 最新文献

Chemistry of Materials最新文献

英文 中文
Integrating Large Language Models into the Chemistry and Materials Science Laboratory Curricula
IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-08 DOI: 10.1021/acs.chemmater.5c0011110.1021/acs.chemmater.5c00111
Annalise E. Maughan*, Eric S. Toberer* and Alexandra Zevalkink*, 
{"title":"Integrating Large Language Models into the Chemistry and Materials Science Laboratory Curricula","authors":"Annalise E. Maughan*, Eric S. Toberer* and Alexandra Zevalkink*, ","doi":"10.1021/acs.chemmater.5c0011110.1021/acs.chemmater.5c00111","DOIUrl":"https://doi.org/10.1021/acs.chemmater.5c00111https://doi.org/10.1021/acs.chemmater.5c00111","url":null,"abstract":"","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 7","pages":"2389–2394 2389–2394"},"PeriodicalIF":7.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143790248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Exploration of Metabolite-Derived Soft Materials Using a Chemical Reaction Network 利用化学反应网络对代谢产物衍生软材料进行硅学探索
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-04 DOI: 10.1021/acs.chemmater.5c00163
Shruti Iyer, Nicholas E. Jackson
Future soft materials and polymer chemistries will require innovative nonpetroleum sourcing pathways. While leveraging microbial metabolites derived from biological feedstocks possesses high potential in many avenues of chemical development, the applicability of this paradigm to the specifics of soft materials chemistry is unclear. Here, we construct a chemical reaction network based on databases of common microbial metabolites and the USPTO reaction set to examine what is possible in the chemical space of metabolite-derived chemistries of relevance to soft materials. We observe that the accessible chemical space of our chemical reaction network possesses strong microbe-specific chemical diversity and that this space saturates rapidly within three synthetic steps applied to the original microbial metabolites. Importantly, we show that the chemical space accessible from metabolite precursors possesses significant overlap with existing petrochemical building blocks, known and proposed synthetically feasible polymer monomers, and the chemical space of common organic semiconductors and redox active materials. The biases induced by the metabolite and reaction databases that parametrize our reaction network are analyzed as a function of chemical functional groups, and pathways toward broader sets of chemistries and reactions are outlined. This work introduces a computational framework for soft materials discovery with the potential to accelerate the identification of soft materials relevant to metabolic engineering targets and nonpetroleum sourcing pathways for existing soft materials.
{"title":"In Silico Exploration of Metabolite-Derived Soft Materials Using a Chemical Reaction Network","authors":"Shruti Iyer, Nicholas E. Jackson","doi":"10.1021/acs.chemmater.5c00163","DOIUrl":"https://doi.org/10.1021/acs.chemmater.5c00163","url":null,"abstract":"Future soft materials and polymer chemistries will require innovative nonpetroleum sourcing pathways. While leveraging microbial metabolites derived from biological feedstocks possesses high potential in many avenues of chemical development, the applicability of this paradigm to the specifics of soft materials chemistry is unclear. Here, we construct a chemical reaction network based on databases of common microbial metabolites and the USPTO reaction set to examine what is possible in the chemical space of metabolite-derived chemistries of relevance to soft materials. We observe that the accessible chemical space of our chemical reaction network possesses strong microbe-specific chemical diversity and that this space saturates rapidly within three synthetic steps applied to the original microbial metabolites. Importantly, we show that the chemical space accessible from metabolite precursors possesses significant overlap with existing petrochemical building blocks, known and proposed synthetically feasible polymer monomers, and the chemical space of common organic semiconductors and redox active materials. The biases induced by the metabolite and reaction databases that parametrize our reaction network are analyzed as a function of chemical functional groups, and pathways toward broader sets of chemistries and reactions are outlined. This work introduces a computational framework for soft materials discovery with the potential to accelerate the identification of soft materials relevant to metabolic engineering targets and nonpetroleum sourcing pathways for existing soft materials.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"20 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Ab Initio Approaches for Area-Selective Atomic Layer Deposition: Methods, Status, and Perspectives 区域选择性原子层沉积的计算 Ab Initio 方法:方法、现状和前景
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-04 DOI: 10.1021/acs.chemmater.4c03477
Fabian Pieck, Ralf Tonner-Zech
Area-selective atomic layer deposition (AS-ALD) has emerged as a transformative technique in nanotechnology, enabling the precise deposition of materials on designated substrates while preventing unwanted growth on adjacent surfaces. This capability is critical for applications in microelectronics, catalysis, and energy technologies. Computational methods, particularly density functional theory (DFT), are indispensable for uncovering the mechanisms underlying AS-ALD, providing insights into surface interactions, selectivity mechanisms, and precursor design. This review introduces the theoretical background of computational techniques applied to AS-ALD and provides a detailed overview of their applications. Special emphasis is placed on the use of ab initio methods to explore surface chemistry, optimize precursor and inhibitor properties, and improve selectivity. A comprehensive overview of the literature is given with an analysis of research questions targeted, and methods used. By consolidating the state of knowledge and identifying future challenges, this work aims to guide researchers in further leveraging computational approaches to drive innovations in AS-ALD processes.
{"title":"Computational Ab Initio Approaches for Area-Selective Atomic Layer Deposition: Methods, Status, and Perspectives","authors":"Fabian Pieck, Ralf Tonner-Zech","doi":"10.1021/acs.chemmater.4c03477","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c03477","url":null,"abstract":"Area-selective atomic layer deposition (AS-ALD) has emerged as a transformative technique in nanotechnology, enabling the precise deposition of materials on designated substrates while preventing unwanted growth on adjacent surfaces. This capability is critical for applications in microelectronics, catalysis, and energy technologies. Computational methods, particularly density functional theory (DFT), are indispensable for uncovering the mechanisms underlying AS-ALD, providing insights into surface interactions, selectivity mechanisms, and precursor design. This review introduces the theoretical background of computational techniques applied to AS-ALD and provides a detailed overview of their applications. Special emphasis is placed on the use of <i>ab initio</i> methods to explore surface chemistry, optimize precursor and inhibitor properties, and improve selectivity. A comprehensive overview of the literature is given with an analysis of research questions targeted, and methods used. By consolidating the state of knowledge and identifying future challenges, this work aims to guide researchers in further leveraging computational approaches to drive innovations in AS-ALD processes.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"89 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of LaFeO3 Morphology on Oxygen Species and Chemical Looping Partial Oxidation of Methane LaFeO3 形态对氧物种和甲烷化学循环部分氧化的影响
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-04 DOI: 10.1021/acs.chemmater.5c00287
Henglong Li, Pengheng Li, Min Lin, Xing Zhu
The design of oxygen carriers is essential for the chemical looping partial oxidation of methane (CL-POM) in syngas production. LaFeO3 is a promising oxygen storage material, but the impact of its morphology on the reaction characteristics and mechanisms in CL-POM remains unclear. Herein, we synthesized and characterized LaFeO3 samples with diverse morphologies (cube, porous microsphere, irregular nanoparticle, and polyhedron) to explore how morphology governs crystal plane exposure, oxygen vacancy formation, and oxygen migration. Results showed that cubic LaFeO3 not only achieved outstanding oxygen storage capacity (4.18 mmol/g), 2.5 times that of the other three samples combined (1.64 mmol/g), but also demonstrated superior methane reactivity with good low-temperature activity (initial reaction temperature of 500 °C) and the highest methane conversion (78.26% at 750 °C). This impressive performance is due to the synergy between oxygen vacancies and the (110) crystal plane, which optimizes oxygen release and enhances methane adsorption and dissociation. DFT calculations further confirmed that the (110) plane has lower energy barriers for reaction processes than the (100) plane, and more oxygen vacancies enhance reactivity and oxygen migration. This work underscores the pivotal role of LaFeO3 morphology in advancing the design of oxygen storage materials and a redox catalyst.
{"title":"Effects of LaFeO3 Morphology on Oxygen Species and Chemical Looping Partial Oxidation of Methane","authors":"Henglong Li, Pengheng Li, Min Lin, Xing Zhu","doi":"10.1021/acs.chemmater.5c00287","DOIUrl":"https://doi.org/10.1021/acs.chemmater.5c00287","url":null,"abstract":"The design of oxygen carriers is essential for the chemical looping partial oxidation of methane (CL-POM) in syngas production. LaFeO<sub>3</sub> is a promising oxygen storage material, but the impact of its morphology on the reaction characteristics and mechanisms in CL-POM remains unclear. Herein, we synthesized and characterized LaFeO<sub>3</sub> samples with diverse morphologies (cube, porous microsphere, irregular nanoparticle, and polyhedron) to explore how morphology governs crystal plane exposure, oxygen vacancy formation, and oxygen migration. Results showed that cubic LaFeO<sub>3</sub> not only achieved outstanding oxygen storage capacity (4.18 mmol/g), 2.5 times that of the other three samples combined (1.64 mmol/g), but also demonstrated superior methane reactivity with good low-temperature activity (initial reaction temperature of 500 °C) and the highest methane conversion (78.26% at 750 °C). This impressive performance is due to the synergy between oxygen vacancies and the (110) crystal plane, which optimizes oxygen release and enhances methane adsorption and dissociation. DFT calculations further confirmed that the (110) plane has lower energy barriers for reaction processes than the (100) plane, and more oxygen vacancies enhance reactivity and oxygen migration. This work underscores the pivotal role of LaFeO<sub>3</sub> morphology in advancing the design of oxygen storage materials and a redox catalyst.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"47 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocorrosion Stability of CdxZn1–xS Yellow-Orange Pigments
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-04 DOI: 10.1021/acs.chemmater.4c03274
Elena Castagnotto, Stefano Alberti, Marta Campolucci, Pietro Manfrinetti, Maurizio Ferretti, Federico Locardi
Cadmium zinc sulfide pigments (CdxZn1–xS) have been extensively used in art and industry for their bright colors. However, concerns exist over their long-term chemical stability. Due to their semiconductive properties under light exposure, these compounds may trigger photocatalytic processes that can lead to degradation issues in artworks. This study aims to replicate and compare the historical wet and dry synthesis of CdxZn1–xS pigments and investigate their photocatalytic behavior, specifically their reactivity and ion leaching predispositions. Using adapted historical methods, we synthesized a series of CdxZn1–xS pigments and fully characterized them using a range of analytical techniques. Their photocatalytic activity was evaluated against methylene blue dye under simulated sunlight, alongside a concomitant assessment of metal ion leaching. These experiments provide valuable insights into the historical pigments photocatalytic behavior, proposing key indicators of pigment reactivity in real artworks and demonstrating the origin of the inherent instability of historically synthesized pigments, particularly those made via wet methods. Under solar simulation, cubic nanosized pigments with 20% and 40% zinc content exhibit the highest degradation activity. This process is accompanied by the leaching of Cd2+ and Zn2+ ions, which may contribute to the formation of undesirable secondary products. The same pigments exhibited ion leaching even in the dark, although at significantly lower levels.
硫化镉锌颜料(CdxZn1-xS)因其色彩鲜艳而被广泛应用于艺术和工业领域。然而,它们的长期化学稳定性却令人担忧。由于这些化合物在光照射下具有半导体特性,可能会引发光催化过程,从而导致艺术品的降解问题。本研究旨在复制和比较历史上 CdxZn1-xS 颜料的湿法和干法合成方法,并研究它们的光催化行为,特别是它们的反应性和离子沥滤倾向。我们采用经过调整的历史方法合成了一系列 CdxZn1-xS 颜料,并使用一系列分析技术对其进行了全面表征。我们评估了这些颜料在模拟阳光下对亚甲蓝染料的光催化活性,并同时评估了金属离子沥滤情况。这些实验对历史颜料的光催化行为提供了宝贵的见解,提出了真实艺术品中颜料反应性的关键指标,并证明了历史合成颜料,尤其是湿法合成颜料固有的不稳定性的根源。在太阳光模拟下,锌含量分别为 20% 和 40% 的立方纳米颜料表现出最高的降解活性。这一过程伴随着 Cd2+ 和 Zn2+ 离子的浸出,这可能会导致不良次生产品的形成。同样的颜料即使在黑暗中也会出现离子沥滤现象,不过沥滤水平要低得多。
{"title":"Photocorrosion Stability of CdxZn1–xS Yellow-Orange Pigments","authors":"Elena Castagnotto, Stefano Alberti, Marta Campolucci, Pietro Manfrinetti, Maurizio Ferretti, Federico Locardi","doi":"10.1021/acs.chemmater.4c03274","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c03274","url":null,"abstract":"Cadmium zinc sulfide pigments (Cd<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>S) have been extensively used in art and industry for their bright colors. However, concerns exist over their long-term chemical stability. Due to their semiconductive properties under light exposure, these compounds may trigger photocatalytic processes that can lead to degradation issues in artworks. This study aims to replicate and compare the historical wet and dry synthesis of Cd<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>S pigments and investigate their photocatalytic behavior, specifically their reactivity and ion leaching predispositions. Using adapted historical methods, we synthesized a series of Cd<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>S pigments and fully characterized them using a range of analytical techniques. Their photocatalytic activity was evaluated against methylene blue dye under simulated sunlight, alongside a concomitant assessment of metal ion leaching. These experiments provide valuable insights into the historical pigments photocatalytic behavior, proposing key indicators of pigment reactivity in real artworks and demonstrating the origin of the inherent instability of historically synthesized pigments, particularly those made via wet methods. Under solar simulation, cubic nanosized pigments with 20% and 40% zinc content exhibit the highest degradation activity. This process is accompanied by the leaching of Cd<sup>2+</sup> and Zn<sup>2+</sup> ions, which may contribute to the formation of undesirable secondary products. The same pigments exhibited ion leaching even in the dark, although at significantly lower levels.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"18 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diamond: Recent Progress in Synthesis and Its Potential in Electronics
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-03 DOI: 10.1021/acs.chemmater.5c00248
Xiang Zhang, Mingfei Xu, Zhi Kai Ng, Robert Vajtai, Edwin Hang Tong Teo, Yuji Zhao, Pulickel M. Ajayan
Diamond, with its extraordinary physical and electrical properties, has emerged as a transformative material for next-generation electronics. Its ultrawide bandgap, superior thermal conductivity, high carrier mobility, and excellent mechanical characteristics uniquely position it to address the limitations of traditional semiconductor materials. However, realizing the full potential of diamond in electronic applications requires overcoming significant challenges in its synthesis scalability, defect and dislocation control, and advanced device fabrication. In this Perspective, we discuss strategies and recent advancements in the synthesis of single-crystalline diamond in wafer scales as well as the reduction of defects and dislocations. The development of new diamond morphologies is also reviewed, underscoring their potential to modify properties and broaden application domains. Furthermore, we highlight the progress in engineering diamond-based electronic devices, particularly, field-effect transistors (FETs). Innovations in surface conductivity optimization and the realization of stable, normally off-device operation have enhanced the performance and reliability of diamond devices. Key areas for future research are proposed throughout, offering insights into the opportunities and challenges that remain in diamond synthesis and harnessing diamond’s full potential for next-generation electronic applications.
{"title":"Diamond: Recent Progress in Synthesis and Its Potential in Electronics","authors":"Xiang Zhang, Mingfei Xu, Zhi Kai Ng, Robert Vajtai, Edwin Hang Tong Teo, Yuji Zhao, Pulickel M. Ajayan","doi":"10.1021/acs.chemmater.5c00248","DOIUrl":"https://doi.org/10.1021/acs.chemmater.5c00248","url":null,"abstract":"Diamond, with its extraordinary physical and electrical properties, has emerged as a transformative material for next-generation electronics. Its ultrawide bandgap, superior thermal conductivity, high carrier mobility, and excellent mechanical characteristics uniquely position it to address the limitations of traditional semiconductor materials. However, realizing the full potential of diamond in electronic applications requires overcoming significant challenges in its synthesis scalability, defect and dislocation control, and advanced device fabrication. In this Perspective, we discuss strategies and recent advancements in the synthesis of single-crystalline diamond in wafer scales as well as the reduction of defects and dislocations. The development of new diamond morphologies is also reviewed, underscoring their potential to modify properties and broaden application domains. Furthermore, we highlight the progress in engineering diamond-based electronic devices, particularly, field-effect transistors (FETs). Innovations in surface conductivity optimization and the realization of stable, normally off-device operation have enhanced the performance and reliability of diamond devices. Key areas for future research are proposed throughout, offering insights into the opportunities and challenges that remain in diamond synthesis and harnessing diamond’s full potential for next-generation electronic applications.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Layer Deposition on Spray-Dried Supraparticles to Rationally Design Catalysts with Ultralow Noble Metal Loadings
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-03 DOI: 10.1021/acs.chemmater.4c03429
Philipp Groppe, Valentin Müller, Johannes Will, Xin Zhou, Kailun Zhang, Michael S. Moritz, Christian Papp, Jörg Libuda, Tanja Retzer, Erdmann Spiecker, Julien Bachmann, Karl Mandel, Susanne Wintzheimer
The controlled assembly of supraparticles by using spray-drying enables the synthesis of nanoporous materials. Changing the size of the constituent nanoparticles or their agglomeration states provides access to a diverse range of pore frameworks. This turns supraparticles into ideal scaffolds in heterogeneous catalysis. The combination of supraparticles with atomic layer deposition (ALD) as a surface functionalization technique offers excellent control over the deposition of a functional material and its distribution over the scaffold on the nanoscale. This work reports the combination of SiO2 supraparticles as tunable scaffolds and their loading with a platinum-based ALD catalyst. The deliberate adjustment of the scaffold pore framework via spray-drying and its effect on the catalyst deposition are highlighted. Furthermore, varying numbers of Pt ALD cycles are applied to explore the capability of the combination approach with respect to catalyst loading and Pt efficiency. High-resolution electron microscopy reveals ultrasmall Pt clusters deposited on the supraparticles after the very first ALD cycle. Using the hydrogenation of 4-nitrophenol as a demonstration, the impact of the pore framework and the Pt deposition variation in ALD on the catalytic functionality is investigated.
利用喷雾干燥技术控制超微粒的组装,可以合成纳米多孔材料。改变组成纳米粒子的尺寸或其聚结状态,可获得各种孔隙框架。这使得超微粒成为异相催化的理想支架。将超微粒与原子层沉积(ALD)相结合作为一种表面功能化技术,可以很好地控制功能材料的沉积及其在纳米尺度支架上的分布。这项研究报告了二氧化硅超微粒作为可调支架与铂基 ALD 催化剂负载的结合。重点介绍了通过喷雾干燥有意调整支架孔隙框架及其对催化剂沉积的影响。此外,还应用了不同数量的铂 ALD 循环,以探索组合方法在催化剂负载和铂效率方面的能力。高分辨率电子显微镜显示,在第一个 ALD 循环后,超小型铂团簇沉积在超微粒上。以 4-硝基苯酚的氢化为例,研究了 ALD 中孔隙框架和铂沉积变化对催化功能的影响。
{"title":"Atomic Layer Deposition on Spray-Dried Supraparticles to Rationally Design Catalysts with Ultralow Noble Metal Loadings","authors":"Philipp Groppe, Valentin Müller, Johannes Will, Xin Zhou, Kailun Zhang, Michael S. Moritz, Christian Papp, Jörg Libuda, Tanja Retzer, Erdmann Spiecker, Julien Bachmann, Karl Mandel, Susanne Wintzheimer","doi":"10.1021/acs.chemmater.4c03429","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c03429","url":null,"abstract":"The controlled assembly of supraparticles by using spray-drying enables the synthesis of nanoporous materials. Changing the size of the constituent nanoparticles or their agglomeration states provides access to a diverse range of pore frameworks. This turns supraparticles into ideal scaffolds in heterogeneous catalysis. The combination of supraparticles with atomic layer deposition (ALD) as a surface functionalization technique offers excellent control over the deposition of a functional material and its distribution over the scaffold on the nanoscale. This work reports the combination of SiO<sub>2</sub> supraparticles as tunable scaffolds and their loading with a platinum-based ALD catalyst. The deliberate adjustment of the scaffold pore framework via spray-drying and its effect on the catalyst deposition are highlighted. Furthermore, varying numbers of Pt ALD cycles are applied to explore the capability of the combination approach with respect to catalyst loading and Pt efficiency. High-resolution electron microscopy reveals ultrasmall Pt clusters deposited on the supraparticles after the very first ALD cycle. Using the hydrogenation of 4-nitrophenol as a demonstration, the impact of the pore framework and the Pt deposition variation in ALD on the catalytic functionality is investigated.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"32 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Visualization of the Dealumination Process on Zeolite Y: How Was the Mesoporous Architecture Formed?
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-03 DOI: 10.1021/acs.chemmater.4c03233
Yoshihiro Kamimura, Tetsuya Kodaira, Hiroki Yamada, Norihito Hiyoshi, Akira Endo
The general aspects in the formation mechanism of mesoporous architecture during the dealumination of zeolites are not fully elucidated owing to their complexity, wherein the creation of dealuminated species and pore structural change can occur in diverse ways. In particular, there is still a lack of direct evidence of intermediate states of the mesopore formation, i.e., the detailed location, precise structure, and behavior of the dealuminated species. Herein, integrated techniques of recently developed high-resolution, low-accelerating-voltage field-emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS) enable direct observation and comparative investigation of the structural and compositional evolution inside zeolite Y with a wide range of Si/Al ratios realized by sequential dealumination. A systematic FE-SEM observation in the cross-section of zeolite Y (fabricated by Ar-BIB milling) revealed that steaming and calcination created a complex local structure in submicrometer-scale regions with bright contrast originating from high-density Al-rich amorphous components. Results of Ar physisorption analyses suggested that steaming and calcination force to eject Al atoms from the zeolite Y framework and create mesopores in it, but this extra-framework Al (EFAl) does not fill micro- and mesopores, which strictly contradicts the previous mechanism. Local condensation of the EFAl leads to a partial collapse of the framework, which transforms into segregated Al-rich amorphous aluminosilicate regions. Further removal of segregated amorphous aluminosilicate via acid leaching significantly led to the additional formation of mesopores. Especially with regard to the internal structure, our concept of the direct visualization approach can be effectively used as a versatile technique to unveil the detailed features of dealuminated species correlated with step-by-step mesopore formation in the dealumination of zeolites.
{"title":"Direct Visualization of the Dealumination Process on Zeolite Y: How Was the Mesoporous Architecture Formed?","authors":"Yoshihiro Kamimura, Tetsuya Kodaira, Hiroki Yamada, Norihito Hiyoshi, Akira Endo","doi":"10.1021/acs.chemmater.4c03233","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c03233","url":null,"abstract":"The general aspects in the formation mechanism of mesoporous architecture during the dealumination of zeolites are not fully elucidated owing to their complexity, wherein the creation of dealuminated species and pore structural change can occur in diverse ways. In particular, there is still a lack of direct evidence of intermediate states of the mesopore formation, i.e., the detailed location, precise structure, and behavior of the dealuminated species. Herein, integrated techniques of recently developed high-resolution, low-accelerating-voltage field-emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS) enable direct observation and comparative investigation of the structural and compositional evolution inside zeolite Y with a wide range of Si/Al ratios realized by sequential dealumination. A systematic FE-SEM observation in the cross-section of zeolite Y (fabricated by Ar-BIB milling) revealed that steaming and calcination created a complex local structure in submicrometer-scale regions with bright contrast originating from high-density Al-rich amorphous components. Results of Ar physisorption analyses suggested that steaming and calcination force to eject Al atoms from the zeolite Y framework and create mesopores in it, but this extra-framework Al (EFAl) does not fill micro- and mesopores, which strictly contradicts the previous mechanism. Local condensation of the EFAl leads to a partial collapse of the framework, which transforms into segregated Al-rich amorphous aluminosilicate regions. Further removal of segregated amorphous aluminosilicate via acid leaching significantly led to the additional formation of mesopores. Especially with regard to the internal structure, our concept of the direct visualization approach can be effectively used as a versatile technique to unveil the detailed features of dealuminated species correlated with step-by-step mesopore formation in the dealumination of zeolites.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"6 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filling the Gaps in the LiBr-LiOH Phase Diagram: A Study on the High-Temperature Li3(OH)2Br Phase
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-03 DOI: 10.1021/acs.chemmater.5c00206
Emily Milan, James A. Quirk, Kenjiro Hashi, John Cattermull, Andrew L. Goodwin, James A. Dawson, Mauro Pasta
In this paper, we build on previous work to characterize a phase with stoichiometry Li3(OH)2Br existing between ∼225 and ∼275 °C in the LiBr-LiOH phase diagram. Diffraction studies indicate that the phase takes a hexagonal unit cell, and theoretical modeling is used to suggest a possible crystal structure. Nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy measurements demonstrate excellent lithium-ion dynamics in this phase, with an ionic conductivity of 0.12 S cm–1 at 250 °C. Initial attempts to stabilize this phase at room temperature through quenching were not successful. Instead, a metastable state demonstrating poor ionic conductivity is found to form. This is an important consideration for the synthesis of Li2OHBr solid-state electrolytes (also found in the LiBr-LiOH phase diagram) which are synthesized by cooling through phase fields containing Li3(OH)2Br, and are hence susceptible to these impurities.
{"title":"Filling the Gaps in the LiBr-LiOH Phase Diagram: A Study on the High-Temperature Li3(OH)2Br Phase","authors":"Emily Milan, James A. Quirk, Kenjiro Hashi, John Cattermull, Andrew L. Goodwin, James A. Dawson, Mauro Pasta","doi":"10.1021/acs.chemmater.5c00206","DOIUrl":"https://doi.org/10.1021/acs.chemmater.5c00206","url":null,"abstract":"In this paper, we build on previous work to characterize a phase with stoichiometry Li<sub>3</sub>(OH)<sub>2</sub>Br existing between ∼225 and ∼275 °C in the LiBr-LiOH phase diagram. Diffraction studies indicate that the phase takes a hexagonal unit cell, and theoretical modeling is used to suggest a possible crystal structure. Nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy measurements demonstrate excellent lithium-ion dynamics in this phase, with an ionic conductivity of 0.12 S cm<sup>–1</sup> at 250 °C. Initial attempts to stabilize this phase at room temperature through quenching were not successful. Instead, a metastable state demonstrating poor ionic conductivity is found to form. This is an important consideration for the synthesis of Li<sub>2</sub>OHBr solid-state electrolytes (also found in the LiBr-LiOH phase diagram) which are synthesized by cooling through phase fields containing Li<sub>3</sub>(OH)<sub>2</sub>Br, and are hence susceptible to these impurities.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"216 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chalcones as Wavelength-Selective Cross-Linkers: Multimaterial Additive Manufacturing of Macro- and Microscopic Soft Active Devices
IF 8.6 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-04-03 DOI: 10.1021/acs.chemmater.4c02450
Stefanie M. Müller, Benjamin R. Nelson, Rita Höller, Christoph Waly, Alexander Jelinek, Bruce E. Kirkpatrick, Sean P. Keyser, Christoph Naderer, Dmitry Sivun, Jaroslaw Jacak, Kristi S. Anseth, Christopher N. Bowman, Sandra Schlögl, Thomas Griesser
Photopolymerization-driven additive manufacturing (AM) is a well-established technique to generate polymeric 3D structures with both high resolution and formation in complex geometries. Recent approaches focus on AM techniques that enable multiproperty architectures using wavelength orthogonal photochemistry. Herein, a dual-cure, single-vat resin was developed, based on the radical photopolymerization of a thiol-methacrylate monomer system containing covalently bound chalcone moieties as dimerizable cross-linkers. Thermo-mechanical properties were spatially and systematically controlled via the wavelength-selective [2 + 2] cycloaddition reaction of the chalcone groups. Reaction kinetics were studied with infrared and ultraviolet–visible spectroscopy to ensure sequence-dependent λ-orthogonality during the two-stage illumination process. 3D-structures were fabricated by dynamic light processing (DLP), imprinting, and two-photon lithography (TPL). In particular, the ability to excite both the radical photoinitiator and the chalcone groups separately with TPL in high spatial resolution enabled the production of multifunctional microstructures and represents a versatile concept for the fabrication of soft active devices along various length scales.
{"title":"Chalcones as Wavelength-Selective Cross-Linkers: Multimaterial Additive Manufacturing of Macro- and Microscopic Soft Active Devices","authors":"Stefanie M. Müller, Benjamin R. Nelson, Rita Höller, Christoph Waly, Alexander Jelinek, Bruce E. Kirkpatrick, Sean P. Keyser, Christoph Naderer, Dmitry Sivun, Jaroslaw Jacak, Kristi S. Anseth, Christopher N. Bowman, Sandra Schlögl, Thomas Griesser","doi":"10.1021/acs.chemmater.4c02450","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02450","url":null,"abstract":"Photopolymerization-driven additive manufacturing (AM) is a well-established technique to generate polymeric 3D structures with both high resolution and formation in complex geometries. Recent approaches focus on AM techniques that enable multiproperty architectures using wavelength orthogonal photochemistry. Herein, a dual-cure, single-vat resin was developed, based on the radical photopolymerization of a thiol-methacrylate monomer system containing covalently bound chalcone moieties as dimerizable cross-linkers. Thermo-mechanical properties were spatially and systematically controlled via the wavelength-selective [2 + 2] cycloaddition reaction of the chalcone groups. Reaction kinetics were studied with infrared and ultraviolet–visible spectroscopy to ensure sequence-dependent λ-orthogonality during the two-stage illumination process. 3D-structures were fabricated by dynamic light processing (DLP), imprinting, and two-photon lithography (TPL). In particular, the ability to excite both the radical photoinitiator and the chalcone groups separately with TPL in high spatial resolution enabled the production of multifunctional microstructures and represents a versatile concept for the fabrication of soft active devices along various length scales.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"22 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemistry of Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1