Xiaohua Chen, Jieping Wu, Bailing Zhou, Manfang Zhu, Jin Zhang, Na Zhou, Yi Zhun Zhu, Xin Zhang, Xingmei Duan, Ke Men
mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans. Lactobacillus reuteri is a bacterial member of the gut flora, and recent research has shown that it can reduce intestinal inflammation by stimulating an immunomodulatory response. L. reuteri lysate represents an ideal resource for constructing advanced mRNA delivery systems with immune stimulation potential. Here, we prepared a bifunctional mRNA delivery system DMP-Lac (DOTAP-mPEG–PCL-L. reuteri lysate), which successfully codelivered L. reuteri lysate and IL-23A mRNA, exhibited a high mRNA delivery efficiency of 75.56% ± 0.85%, and strongly promoted the maturation and activation of the immune system in vivo. Both the CT26 abdominal metastasis model and the lung metastasis model also exhibited a good therapeutic effect, and the tumor inhibition rate of DMP-Lac/IL-23A group reached 97.92%. Protein chip technology verified that DMP acted as an immune adjuvant, demonstrating that the L. reuteri lysate could regulate the related immune cells, while IL-23 mRNA caused changes in downstream factors, thus producing the corresponding tumor treatment effect. The DMP-Lac/IL-23A complex exhibited strong anticancer immunotherapeutic effects. Our results demonstrated that this bifunctional mRNA formulation served as a tumor-specific nanomedicine, providing an advanced strategy for colon cancer immunogene therapy.
{"title":"Bacterial Lysate–Based Bifunctional mRNA Nanoformulation for Efficient Colon Cancer Immunogene Therapy","authors":"Xiaohua Chen, Jieping Wu, Bailing Zhou, Manfang Zhu, Jin Zhang, Na Zhou, Yi Zhun Zhu, Xin Zhang, Xingmei Duan, Ke Men","doi":"10.1021/acsami.4c07684","DOIUrl":"https://doi.org/10.1021/acsami.4c07684","url":null,"abstract":"mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans. <i>Lactobacillus reuteri</i> is a bacterial member of the gut flora, and recent research has shown that it can reduce intestinal inflammation by stimulating an immunomodulatory response. <i>L. reuteri</i> lysate represents an ideal resource for constructing advanced mRNA delivery systems with immune stimulation potential. Here, we prepared a bifunctional mRNA delivery system DMP-Lac (DOTAP-mPEG–PCL-<i>L. reuteri</i> lysate), which successfully codelivered <i>L. reuteri</i> lysate and IL-23A mRNA, exhibited a high mRNA delivery efficiency of 75.56% ± 0.85%, and strongly promoted the maturation and activation of the immune system in vivo. Both the CT26 abdominal metastasis model and the lung metastasis model also exhibited a good therapeutic effect, and the tumor inhibition rate of DMP-Lac/IL-23A group reached 97.92%. Protein chip technology verified that DMP acted as an immune adjuvant, demonstrating that the <i>L. reuteri</i> lysate could regulate the related immune cells, while IL-23 mRNA caused changes in downstream factors, thus producing the corresponding tumor treatment effect. The DMP-Lac/IL-23A complex exhibited strong anticancer immunotherapeutic effects. Our results demonstrated that this bifunctional mRNA formulation served as a tumor-specific nanomedicine, providing an advanced strategy for colon cancer immunogene therapy.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Integrating the dual functionalities of a photodetector and photonic synapse into a single device is challenging due to their conflicting requirements for photocurrent decay rates. This study addresses this issue by seamlessly depositing transparent indium tin oxide (ITO) electrodes onto self-oriented copper hexadecafluoro-phthalocyanine (F16CuPc) nanowires growing horizontally along hot-stamped periodic nanogrooves on a transparent flexible polyimide plastic film. This in-situ-fabricated device achieves bending-stable dual functionalities through wavelength regulation while maintaining high transparency and flexibility. Upon exposure to 450–850 nm light, the device exhibits a rapid and sensitive photoresponse with excellent bending stability, making it ideal for optical sensing in both visible and near-infrared spectra. More importantly, the device exhibits a bending-stable excitation postsynaptic current when exposed to light spikes below 405 nm. This enables the successful emulation of various biological synaptic functionalities, including paired-pulse facilitation, spike-number-dependent plasticity, spike-duration-dependent plasticity, spike-rating-dependent plasticity, configurable plasticity between short-term plasticity and long-term plasticity, and memory learning capabilities. Utilizing this device in an artificial neural network achieves a recognition rate of 95% after 57 training epochs. Its ability to switch between photodetection and synaptic modes by adjusting the light wavelength marks a significant advancement in the field of multifunctional flexible electronics based on nanowire arrays.
{"title":"In-Situ Fabricated Transparent Flexible Nanowire Device with Wavelength-Regulated Dual-Function of Photodetector and Photonic Synapse","authors":"Xiangtao Chen, Wanglong Mao, Wei Zhou, Pingyang Huang, Hanyu Liu, Xingyu Wang, Zhanhao Liang, Qiming Yang, Yanbin Chen, Guofu Zhou, Jinyou Xu","doi":"10.1021/acsami.4c12357","DOIUrl":"https://doi.org/10.1021/acsami.4c12357","url":null,"abstract":"Integrating the dual functionalities of a photodetector and photonic synapse into a single device is challenging due to their conflicting requirements for photocurrent decay rates. This study addresses this issue by seamlessly depositing transparent indium tin oxide (ITO) electrodes onto self-oriented copper hexadecafluoro-phthalocyanine (F<sub>16</sub>CuPc) nanowires growing horizontally along hot-stamped periodic nanogrooves on a transparent flexible polyimide plastic film. This in-situ-fabricated device achieves bending-stable dual functionalities through wavelength regulation while maintaining high transparency and flexibility. Upon exposure to 450–850 nm light, the device exhibits a rapid and sensitive photoresponse with excellent bending stability, making it ideal for optical sensing in both visible and near-infrared spectra. More importantly, the device exhibits a bending-stable excitation postsynaptic current when exposed to light spikes below 405 nm. This enables the successful emulation of various biological synaptic functionalities, including paired-pulse facilitation, spike-number-dependent plasticity, spike-duration-dependent plasticity, spike-rating-dependent plasticity, configurable plasticity between short-term plasticity and long-term plasticity, and memory learning capabilities. Utilizing this device in an artificial neural network achieves a recognition rate of 95% after 57 training epochs. Its ability to switch between photodetection and synaptic modes by adjusting the light wavelength marks a significant advancement in the field of multifunctional flexible electronics based on nanowire arrays.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Persistent luminescence phosphors (PLPs) can remain luminescent after excitation ceases and have been widely explored in bioimaging and therapy since 2007. In bioimaging, PLPs can efficiently avoid tissue autofluorescence and light scattering interference by collecting persistent luminescence signals after the end of excitation. Outstanding signal-to-background ratios, high sensitivity, and resolution have been achieved in bioimaging with PLPs. In therapy, PLPs can continuously produce therapeutic molecules such as reactive oxygen species after removing excitation sources, which realizes sustained therapeutic activity after a single dose of light stimulation. However, most PLPs are activated by ultraviolet or visible light, which makes it difficult to reactivate the PLPs in vivo, particularly in deep tissues. In recent years, excitation sources with deep tissue penetration have been explored to activate PLPs, including X-ray, γ-ray, and ultrasound. Researchers found that various inorganic and organic PLPs can be activated by X-ray, γ-ray, and ultrasound, making these PLPs valuable in the imaging and therapy of deep-seated tumors. These X-ray/γ-ray/ultrasound-activated PLPs have not been systematically introduced in previous reviews. In this review, we summarize the recently developed inorganic and organic PLPs that can be activated by X-ray, γ-ray, and ultrasound to produce persistent luminescence. The biomedical applications of these PLPs in deep-tissue bioimaging and therapy are also discussed. This review can provide instructions for the design of PLPs with deep-tissue-renewable persistent luminescence and further promote the applications of PLPs in phototheranostics, noninvasive biosensing devices, and energy harvesting.
持久发光荧光粉(PLPs)可在激发停止后保持发光,自 2007 年以来已在生物成像和治疗领域得到广泛应用。在生物成像中,持久发光荧光粉可以在激发结束后收集持久发光信号,从而有效避免组织自发荧光和光散射干扰。利用 PLPs 进行生物成像可获得出色的信噪比、高灵敏度和高分辨率。在治疗方面,PLPs 可以在去除激发源后持续产生治疗分子(如活性氧),从而实现单剂量光刺激后的持续治疗活性。然而,大多数 PLPs 是由紫外线或可见光激活的,因此很难在体内重新激活 PLPs,尤其是在深层组织中。近年来,人们探索了具有深层组织穿透力的激发源来激活 PLPs,包括 X 射线、γ 射线和超声波。研究人员发现,X 射线、γ 射线和超声波可激活各种无机和有机聚磷酸酯,使这些聚磷酸酯在深部肿瘤的成像和治疗中发挥重要作用。在以往的综述中,还没有系统地介绍过这些被 X 射线/γ 射线/超声波激活的 PLPs。在这篇综述中,我们总结了最近开发的可被 X 射线、γ 射线和超声激活以产生持续发光的无机和有机 PLPs。我们还讨论了这些 PLPs 在深层组织生物成像和治疗中的生物医学应用。这篇综述可为设计具有深层组织可再生持续发光功能的 PLPs 提供指导,并进一步促进 PLPs 在光otheranostics、无创生物传感设备和能量收集方面的应用。
{"title":"X-ray/γ-ray/Ultrasound-Activated Persistent Luminescence Phosphors for Deep Tissue Bioimaging and Therapy","authors":"Yurong Wei, Jie Wang","doi":"10.1021/acsami.4c11585","DOIUrl":"https://doi.org/10.1021/acsami.4c11585","url":null,"abstract":"Persistent luminescence phosphors (PLPs) can remain luminescent after excitation ceases and have been widely explored in bioimaging and therapy since 2007. In bioimaging, PLPs can efficiently avoid tissue autofluorescence and light scattering interference by collecting persistent luminescence signals after the end of excitation. Outstanding signal-to-background ratios, high sensitivity, and resolution have been achieved in bioimaging with PLPs. In therapy, PLPs can continuously produce therapeutic molecules such as reactive oxygen species after removing excitation sources, which realizes sustained therapeutic activity after a single dose of light stimulation. However, most PLPs are activated by ultraviolet or visible light, which makes it difficult to reactivate the PLPs <i>in vivo</i>, particularly in deep tissues. In recent years, excitation sources with deep tissue penetration have been explored to activate PLPs, including X-ray, γ-ray, and ultrasound. Researchers found that various inorganic and organic PLPs can be activated by X-ray, γ-ray, and ultrasound, making these PLPs valuable in the imaging and therapy of deep-seated tumors. These X-ray/γ-ray/ultrasound-activated PLPs have not been systematically introduced in previous reviews. In this review, we summarize the recently developed inorganic and organic PLPs that can be activated by X-ray, γ-ray, and ultrasound to produce persistent luminescence. The biomedical applications of these PLPs in deep-tissue bioimaging and therapy are also discussed. This review can provide instructions for the design of PLPs with deep-tissue-renewable persistent luminescence and further promote the applications of PLPs in phototheranostics, noninvasive biosensing devices, and energy harvesting.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheyu Liu, Kang Du, Chengyun Li, Weiping Gong, Ting Wang, Yiyang Cai, Yaodong Liu, Guochao Wei, Weijia Han, Yi Xiong, Wen Lei, Shengxiang Wang
Single-phase BaM4Si5O17 (M = Yb, Er, Y, Ho) ceramics have been investigated for their crystal structures, microwave dielectric properties, flexural strength, and potential applications in dielectric antennas. Rietveld refinement and TEM analysis revealed that the BaM4Si5O17 ceramics exhibit a monoclinic structure (space groups: P21/m). The εr of the BaM4Si5O17 ceramics was dominated by ionic polarizability and ρrel. The Q × f values were considerably larger at BaM4Si5O17 (M = Yb and Y) ceramics with the high Utotal and low intrinsic dielectric loss. The τf values were controlled by the MO6 octahedron distortion and –VBa. The flexural strength was mainly dominated by pores and average grain size and reached the maximum value (156 MPa) at BaY4Si5O17 ceramic with small average gain sizes and high relative density. Additionally, a patch antenna was fabricated using high-performance BaY4Si5O17 ceramic characterized by a εr value of 9.02, a Q × f value of 60620 at 12.30 GHz, and a τf value of −37.65 ppm/°C. This design achieved a high simulated radiation efficiency of 82.70% and a gain of 5.60 dBi at 6.97 GHz. indicating potential applications of BaY4Si5O17 ceramic because of its low dielectric loss and high flexural strength.
{"title":"Design and Fabrication of a C-Band Patch Antenna with Low Loss BaM4Si5O17 Microwave Dielectric Ceramics","authors":"Zheyu Liu, Kang Du, Chengyun Li, Weiping Gong, Ting Wang, Yiyang Cai, Yaodong Liu, Guochao Wei, Weijia Han, Yi Xiong, Wen Lei, Shengxiang Wang","doi":"10.1021/acsami.4c11111","DOIUrl":"https://doi.org/10.1021/acsami.4c11111","url":null,"abstract":"Single-phase BaM<sub>4</sub>Si<sub>5</sub>O<sub>17</sub> (M = Yb, Er, Y, Ho) ceramics have been investigated for their crystal structures, microwave dielectric properties, flexural strength, and potential applications in dielectric antennas. Rietveld refinement and TEM analysis revealed that the BaM<sub>4</sub>Si<sub>5</sub>O<sub>17</sub> ceramics exhibit a monoclinic structure (space groups: <i>P</i>2<sub>1</sub>/<i>m</i>). The ε<sub>r</sub> of the BaM<sub>4</sub>Si<sub>5</sub>O<sub>17</sub> ceramics was dominated by ionic polarizability and ρ<sub>rel</sub>. The <i>Q</i> × <i>f</i> values were considerably larger at BaM<sub>4</sub>Si<sub>5</sub>O<sub>17</sub> (M = Yb and Y) ceramics with the high <i>U</i><sub>total</sub> and low intrinsic dielectric loss. The τ<sub>f</sub> values were controlled by the MO<sub>6</sub> octahedron distortion and <sup>–</sup><i>V</i><sub>Ba</sub>. The flexural strength was mainly dominated by pores and average grain size and reached the maximum value (156 MPa) at BaY<sub>4</sub>Si<sub>5</sub>O<sub>17</sub> ceramic with small average gain sizes and high relative density. Additionally, a patch antenna was fabricated using high-performance BaY<sub>4</sub>Si<sub>5</sub>O<sub>17</sub> ceramic characterized by a ε<sub>r</sub> value of 9.02, a <i>Q</i> × <i>f</i> value of 60620 at 12.30 GHz, and a τ<sub>f</sub> value of −37.65 ppm/°C. This design achieved a high simulated radiation efficiency of 82.70% and a gain of 5.60 dBi at 6.97 GHz. indicating potential applications of BaY<sub>4</sub>Si<sub>5</sub>O<sub>17</sub> ceramic because of its low dielectric loss and high flexural strength.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cisplatin resistance significantly impacts the antitumor efficacy of cisplatin chemotherapy and contributes to poor prognosis, including metastasis. In this study, we present the utilization of metal–organic framework (MOF) nanoparticles as the therapeutic component and drug loading scaffold for implementing a ternary combination therapeutic strategy to combat cisplatin-resistant lung cancer and metastasis. Specifically, by engineering MOFs (Cis@MOF-siVEGF) through the self-assembly of THPP as photosensitizer for photodynamic therapy (PDT), along with the incorporation of cisplatin (DDP) and VEGF siRNA (siVEGF), we propose the leverage of photodynamic-induced oxidative damage and gene silencing of the angiogenic factor to reverse cisplatin resistance and sensitize therapeutic potency. Our findings demonstrated that the chemo/photodynamic/antiangiogenic triple combination therapy via Cis@MOF-siVEGF under irradiation effectively inhibits cisplatin-resistant tumor growth and induces abscopal effects. Importantly, molecular mechanistic exploration suggested that MUC4 exerted regulatory effects on governing cancer metastasis, thus representing a potential immunotherapeutic target for cancer intervention. Overall, our study creates a MOFs-based multicomponent delivery platform for complementary therapeutic modules with synergistically enhanced antitumor efficacy and sheds light on potential regulatory mechanisms on cisplatin-resistance cancers.
{"title":"Co-Delivery of VEGF siRNA and THPP via Metal–Organic Framework Reverses Cisplatin-Resistant Non-Small Cell Lung Cancer and Inhibits Metastasis through a MUC4 Regulating Mechanism","authors":"Jiawen Lv, Jiayan Chen, Yueyue Song, Yanwen Yao, Guannan Wu, Dongmei Yuan, Xiaoling Gu, Xing Li, Chunwei Xu, Baolong Zhou, Mingxiang Ye, Tangfeng Lv, Dong Wang, Yong Song","doi":"10.1021/acsami.4c15175","DOIUrl":"https://doi.org/10.1021/acsami.4c15175","url":null,"abstract":"Cisplatin resistance significantly impacts the antitumor efficacy of cisplatin chemotherapy and contributes to poor prognosis, including metastasis. In this study, we present the utilization of metal–organic framework (MOF) nanoparticles as the therapeutic component and drug loading scaffold for implementing a ternary combination therapeutic strategy to combat cisplatin-resistant lung cancer and metastasis. Specifically, by engineering MOFs (Cis@MOF-siVEGF) through the self-assembly of THPP as photosensitizer for photodynamic therapy (PDT), along with the incorporation of cisplatin (DDP) and VEGF siRNA (siVEGF), we propose the leverage of photodynamic-induced oxidative damage and gene silencing of the angiogenic factor to reverse cisplatin resistance and sensitize therapeutic potency. Our findings demonstrated that the chemo/photodynamic/antiangiogenic triple combination therapy via Cis@MOF-siVEGF under irradiation effectively inhibits cisplatin-resistant tumor growth and induces abscopal effects. Importantly, molecular mechanistic exploration suggested that MUC4 exerted regulatory effects on governing cancer metastasis, thus representing a potential immunotherapeutic target for cancer intervention. Overall, our study creates a MOFs-based multicomponent delivery platform for complementary therapeutic modules with synergistically enhanced antitumor efficacy and sheds light on potential regulatory mechanisms on cisplatin-resistance cancers.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, we designed two nitrogen-bridged fluorene-based heptacyclic FNT and nonacyclic FNTT ladder-type structures, which were constructed by one-pot palladium-catalyzed Buchwald–Hartwig amination. FNT and FNTT were further end-capped by FIC acceptors to form two FNT-FIC and FNTT-FIC non-fullerene acceptors (NFAs), respectively. The two NFAs exhibit more red-shifted absorption and higher crystallinity compared to those of the corresponding carbon-bridged FCT-FIC and FCTT-FIC counterparts. Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements reveal that the 2-butyloctyl groups on the nitrogen in the convex region of FNT-FIC interdigitate with the dioctyl groups on the fluorene in the concave region of another FNT-FIC, resulting in a lamellar packing structure with a d spacing of 13.27 Å. As a consequence, the PM6:FNT-FIC (1:1 wt %) device achieved a power conversion efficiency (PCE) of only 6.60%, primarily due to the highly crystalline nature of FNT-FIC, which induced significant phase separation between PM6 and FNT-FIC in the blended film. However, FNTT-FIC, featuring 2-butyloctyl groups positioned on the nitrogen within the concave region of its curved skeleton, exhibits improved donor–acceptor miscibility, thereby promoting a more favorable morphology. As a result, the PM6:FNTT-FIC (1:1.2 wt %) device exhibited a higher PCE of 12.15% with an exceptional Voc of 0.96 V. This research demonstrates that placing alkylamino moieties within the concave region of curved A–D–A NFAs leads to a better molecular design.
{"title":"Nitrogen-Bridged Fused-Ring Nonacyclic and Heptacyclic A–D–A Acceptors for Organic Photovoltaics","authors":"Yung-Jing Xue, Yu-Chieh Wang, Han-Cheng Lu, Chia-Lin Tsai, Chia-Fang Lu, Li-Lun Yeh, Yen-Ju Cheng","doi":"10.1021/acsami.4c11466","DOIUrl":"https://doi.org/10.1021/acsami.4c11466","url":null,"abstract":"In this work, we designed two nitrogen-bridged fluorene-based heptacyclic FNT and nonacyclic FNTT ladder-type structures, which were constructed by one-pot palladium-catalyzed Buchwald–Hartwig amination. FNT and FNTT were further end-capped by FIC acceptors to form two FNT-FIC and FNTT-FIC non-fullerene acceptors (NFAs), respectively. The two NFAs exhibit more red-shifted absorption and higher crystallinity compared to those of the corresponding carbon-bridged FCT-FIC and FCTT-FIC counterparts. Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements reveal that the 2-butyloctyl groups on the nitrogen in the convex region of FNT-FIC interdigitate with the dioctyl groups on the fluorene in the concave region of another FNT-FIC, resulting in a lamellar packing structure with a <i>d</i> spacing of 13.27 Å. As a consequence, the PM6:FNT-FIC (1:1 wt %) device achieved a power conversion efficiency (PCE) of only 6.60%, primarily due to the highly crystalline nature of FNT-FIC, which induced significant phase separation between PM6 and FNT-FIC in the blended film. However, FNTT-FIC, featuring 2-butyloctyl groups positioned on the nitrogen within the concave region of its curved skeleton, exhibits improved donor–acceptor miscibility, thereby promoting a more favorable morphology. As a result, the PM6:FNTT-FIC (1:1.2 wt %) device exhibited a higher PCE of 12.15% with an exceptional <i>V</i><sub>oc</sub> of 0.96 V. This research demonstrates that placing alkylamino moieties within the concave region of curved A–D–A NFAs leads to a better molecular design.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samantha A. McBride, Severine Atis, Amir A. Pahlavan, Kripa K. Varanasi
Fluid instabilities can be harnessed for facile self-assembly of patterned structures on the nano- and microscale. Evaporative self-assembly from drops is one simple technique that enables a range of patterning behaviors due to the multitude of fluid instabilities that arise due to the simultaneous existence of temperature and solutal gradients. However, the method suffers from limited controllability over patterns that can arise and their morphology. Here, we demonstrate that a range of distinct crystalline patterns including hexagonal arrays, branches, and sawtooth structures emerge from evaporation of water drops containing calcium sulfate on hydrophilic and superhydrophilic substrates. Different pattern regimes emerge as a function of contact line dynamics and evaporation rates, which dictate which fluid instabilities are most likely to emerge. The underlying physical mechanisms behind instability for controlled self-assembly involve Marangoni flows and forced wetting/dewetting. We also demonstrate that these patterns composed of water-soluble inorganic crystals can serve as sustainable and easily removable masks for applications in microscale fabrication.
{"title":"Crystal Patterning from Aqueous Solutions via Solutal Instabilities","authors":"Samantha A. McBride, Severine Atis, Amir A. Pahlavan, Kripa K. Varanasi","doi":"10.1021/acsami.4c12466","DOIUrl":"https://doi.org/10.1021/acsami.4c12466","url":null,"abstract":"Fluid instabilities can be harnessed for facile self-assembly of patterned structures on the nano- and microscale. Evaporative self-assembly from drops is one simple technique that enables a range of patterning behaviors due to the multitude of fluid instabilities that arise due to the simultaneous existence of temperature and solutal gradients. However, the method suffers from limited controllability over patterns that can arise and their morphology. Here, we demonstrate that a range of distinct crystalline patterns including hexagonal arrays, branches, and sawtooth structures emerge from evaporation of water drops containing calcium sulfate on hydrophilic and superhydrophilic substrates. Different pattern regimes emerge as a function of contact line dynamics and evaporation rates, which dictate which fluid instabilities are most likely to emerge. The underlying physical mechanisms behind instability for controlled self-assembly involve Marangoni flows and forced wetting/dewetting. We also demonstrate that these patterns composed of water-soluble inorganic crystals can serve as sustainable and easily removable masks for applications in microscale fabrication.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuela Proença, Tomáš Lednický, Diana I. Meira, Marco S. Rodrigues, Filipe Vaz, Joel Borges, Attila Bonyár
Localized surface plasmon resonance (LSPR) gas sensitivity is introduced as a new parameter to evaluate the performance of plasmonic gas sensors. A model is proposed to consider the plasmonic sensors’ surface sensitivity and plasmon decay length and correlate the LSPR response, measured upon gas exchange, with an equivalent refractive index change consistent with adsorbed gas layers. To demonstrate the applicability of this new parameter, ellipsoidal gold nanoparticles (NPs) arranged in densely packed hexagonal lattices were fabricated. The main advantages of these sensors are the small and tunable interparticle gaps (18–29 nm) between nanoparticles (diameters: 72–88 nm), with their robust and scalable fabrication technology that allows the well-ordered arrangement to be maintained on a large (cm2 range) area. The LSPR response of the sensors was tested using an LSPR sensing system by switching the gas atmosphere between inorganic gases, namely He/Ar and Ar/CO2, at constant pressure and room temperature. It was shown that this newly proposed parameter can be generally used for benchmarking plasmonic gas sensors and is independent of the type and pressure of the tested gases for a sensor structure. Furthermore, it resolves the apparent disagreement when comparing the response of plasmonic sensors tested in liquids and gases.
{"title":"New Parameter for Benchmarking Plasmonic Gas Sensors Demonstrated with Densely Packed Au Nanoparticle Layers","authors":"Manuela Proença, Tomáš Lednický, Diana I. Meira, Marco S. Rodrigues, Filipe Vaz, Joel Borges, Attila Bonyár","doi":"10.1021/acsami.4c11102","DOIUrl":"https://doi.org/10.1021/acsami.4c11102","url":null,"abstract":"Localized surface plasmon resonance (LSPR) gas sensitivity is introduced as a new parameter to evaluate the performance of plasmonic gas sensors. A model is proposed to consider the plasmonic sensors’ surface sensitivity and plasmon decay length and correlate the LSPR response, measured upon gas exchange, with an equivalent refractive index change consistent with adsorbed gas layers. To demonstrate the applicability of this new parameter, ellipsoidal gold nanoparticles (NPs) arranged in densely packed hexagonal lattices were fabricated. The main advantages of these sensors are the small and tunable interparticle gaps (18–29 nm) between nanoparticles (diameters: 72–88 nm), with their robust and scalable fabrication technology that allows the well-ordered arrangement to be maintained on a large (cm<sup>2</sup> range) area. The LSPR response of the sensors was tested using an LSPR sensing system by switching the gas atmosphere between inorganic gases, namely He/Ar and Ar/CO<sub>2</sub>, at constant pressure and room temperature. It was shown that this newly proposed parameter can be generally used for benchmarking plasmonic gas sensors and is independent of the type and pressure of the tested gases for a sensor structure. Furthermore, it resolves the apparent disagreement when comparing the response of plasmonic sensors tested in liquids and gases.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michal Kaufman, Jaroslav Vlček, Jiří Houška, Sadoon Farrukh, Stanislav Haviar
We report strongly thermochromic YSZ/V0.855W0.018Sr0.127O2/SiO2 coatings, where YSZ is Y-stabilized ZrO2, prepared by using a scalable deposition technique on standard glass at a low substrate temperature of 320 °C and without any substrate bias voltage. The coatings exhibit a transition temperature of 22 °C with an integral luminous transmittance of 63.7% (low-temperature state) and 60.7% (high-temperature state) and a modulation of the solar energy transmittance of 11.2%. Such a combination of properties, together with the low deposition temperature, fulfills the requirements for large-scale implementation on building glass and has not been reported yet. Reactive high-power impulse magnetron sputtering with a pulsed O2 flow feedback control allows us to prepare crystalline W and Sr codoped VO2 of the correct stoichiometry. The W doping of VO2 decreases the transition temperature, while the Sr doping of VO2 increases the luminous transmittance significantly. A coating design utilizing second-order interference in two antireflection layers is used to maximize both the integral luminous transmittance and the modulation of the solar energy transmittance. A compact crystalline structure of the bottom YSZ antireflection layer further improves the VO2 crystallinity, while the top SiO2 antireflection layer provides also the mechanical and environmental protection for the V0.855W0.018Sr0.127O2 layer.
我们报告了强热致变色YSZ/V0.855W0.018Sr0.127O2/SiO2涂层,其中YSZ是Y稳定的ZrO2,该涂层是在标准玻璃上采用可扩展沉积技术制备的,基底温度低至320 °C,且不需要任何基底偏压。涂层的过渡温度为 22 °C,整体透光率为 63.7%(低温态)和 60.7%(高温态),太阳能透射率调制为 11.2%。这样的性能组合,加上较低的沉积温度,满足了在建筑玻璃上大规模应用的要求,目前还没有相关报道。通过脉冲 O2 流量反馈控制的反应式高功率脉冲磁控溅射,我们制备出了具有正确化学计量的 W 和 Sr 共掺结晶 VO2。掺入 W 的 VO2 降低了转变温度,而掺入 Sr 的 VO2 则显著提高了透光率。利用两个抗反射层中的二阶干涉进行涂层设计,可最大限度地提高整体透光率和太阳能透射率的调制。底部 YSZ 减反射层的紧凑结晶结构进一步提高了 VO2 的结晶度,而顶部 SiO2 减反射层也为 V0.855W0.018Sr0.127O2 层提供了机械和环境保护。
{"title":"Design and Scalable Synthesis of Thermochromic VO2-Based Coatings for Energy-Saving Smart Windows with Exceptional Optical Performance","authors":"Michal Kaufman, Jaroslav Vlček, Jiří Houška, Sadoon Farrukh, Stanislav Haviar","doi":"10.1021/acsami.4c05696","DOIUrl":"https://doi.org/10.1021/acsami.4c05696","url":null,"abstract":"We report strongly thermochromic YSZ/V<sub>0.855</sub>W<sub>0.018</sub>Sr<sub>0.127</sub>O<sub>2</sub>/SiO<sub>2</sub> coatings, where YSZ is Y-stabilized ZrO<sub>2</sub>, prepared by using a scalable deposition technique on standard glass at a low substrate temperature of 320 °C and without any substrate bias voltage. The coatings exhibit a transition temperature of 22 °C with an integral luminous transmittance of 63.7% (low-temperature state) and 60.7% (high-temperature state) and a modulation of the solar energy transmittance of 11.2%. Such a combination of properties, together with the low deposition temperature, fulfills the requirements for large-scale implementation on building glass and has not been reported yet. Reactive high-power impulse magnetron sputtering with a pulsed O<sub>2</sub> flow feedback control allows us to prepare crystalline W and Sr codoped VO<sub>2</sub> of the correct stoichiometry. The W doping of VO<sub>2</sub> decreases the transition temperature, while the Sr doping of VO<sub>2</sub> increases the luminous transmittance significantly. A coating design utilizing second-order interference in two antireflection layers is used to maximize both the integral luminous transmittance and the modulation of the solar energy transmittance. A compact crystalline structure of the bottom YSZ antireflection layer further improves the VO<sub>2</sub> crystallinity, while the top SiO<sub>2</sub> antireflection layer provides also the mechanical and environmental protection for the V<sub>0.855</sub>W<sub>0.018</sub>Sr<sub>0.127</sub>O<sub>2</sub> layer.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Yang, Cong Zhang, Liting Lin, Qingrong Li, Min Wang, Yiqun Zhang, Yue Yu, Duanmin Hu, Xianwen Wang
In ulcerative colitis (UC), the formation of an inflammatory environment is due to the combined effects of excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), overproduction of proinflammatory cytokines, and disruption of immune system function. There are many kinds of traditional drugs for the clinical treatment of UC, but long-term drug use can cause toxic side effects and drug resistance and can also reduce patient compliance and other drawbacks. Hence, in light of the clinical challenges associated with UC, including the limitations of existing treatments, intense adverse reactions and the development of resistance to medications, no novel therapeutic agents that offer effective relief and maintain a high level of biosafety are urgently needed. Although many anti-inflammatory nanomedicines have been developed by researchers, the development of efficient and nontoxic nanomedicines is still a major challenge in clinical medicine. Using the natural product gallic acid and the metal compound manganese chloride, a highly effective and nontoxic multifunctional nanoenzyme was developed for the treatment of UC. Nanozymes can effectively eliminate ROS and RNS to reduce the inflammation of intestinal epithelial cells caused by oxidation, facilitate the restoration of the intestinal epithelial barrier through the upregulation of tight junction protein expression, and balance the intestinal microbiota to maintain the stability of the intestinal environment. Using a rodent model designed to mimic UC, we monitored body weight, colon length, the spleen index, and the degree of tissue damage and demonstrated that manganese gallate (MnGA) nanoparticles can reduce intestinal inflammation by clearing ROS and active nitrogen. Intestinal flora sequencing revealed that MnGA nanoparticles could regulate the intestinal flora, promote the growth of beneficial bacteria and decrease the levels of detrimental bacteria within the intestinal tract in a mouse model of UC. Thus, MnGA nanoparticles can maintain the balance of the intestinal flora. This study demonstrated that MnGA nanoparticles are excellent antioxidant and effective anti-inflammatory agents, have good biosafety, and can effectively treat UC.
{"title":"Multifunctional MnGA Nanozymes for the Treatment of Ulcerative Colitis by Reducing Intestinal Inflammation and Regulating the Intestinal Flora","authors":"Yan Yang, Cong Zhang, Liting Lin, Qingrong Li, Min Wang, Yiqun Zhang, Yue Yu, Duanmin Hu, Xianwen Wang","doi":"10.1021/acsami.4c14291","DOIUrl":"https://doi.org/10.1021/acsami.4c14291","url":null,"abstract":"In ulcerative colitis (UC), the formation of an inflammatory environment is due to the combined effects of excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), overproduction of proinflammatory cytokines, and disruption of immune system function. There are many kinds of traditional drugs for the clinical treatment of UC, but long-term drug use can cause toxic side effects and drug resistance and can also reduce patient compliance and other drawbacks. Hence, in light of the clinical challenges associated with UC, including the limitations of existing treatments, intense adverse reactions and the development of resistance to medications, no novel therapeutic agents that offer effective relief and maintain a high level of biosafety are urgently needed. Although many anti-inflammatory nanomedicines have been developed by researchers, the development of efficient and nontoxic nanomedicines is still a major challenge in clinical medicine. Using the natural product gallic acid and the metal compound manganese chloride, a highly effective and nontoxic multifunctional nanoenzyme was developed for the treatment of UC. Nanozymes can effectively eliminate ROS and RNS to reduce the inflammation of intestinal epithelial cells caused by oxidation, facilitate the restoration of the intestinal epithelial barrier through the upregulation of tight junction protein expression, and balance the intestinal microbiota to maintain the stability of the intestinal environment. Using a rodent model designed to mimic UC, we monitored body weight, colon length, the spleen index, and the degree of tissue damage and demonstrated that manganese gallate (MnGA) nanoparticles can reduce intestinal inflammation by clearing ROS and active nitrogen. Intestinal flora sequencing revealed that MnGA nanoparticles could regulate the intestinal flora, promote the growth of beneficial bacteria and decrease the levels of detrimental bacteria within the intestinal tract in a mouse model of UC. Thus, MnGA nanoparticles can maintain the balance of the intestinal flora. This study demonstrated that MnGA nanoparticles are excellent antioxidant and effective anti-inflammatory agents, have good biosafety, and can effectively treat UC.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}