首页 > 最新文献

ACS Materials Letters最新文献

英文 中文
Thermodynamics and Catalytic Activity of the Reduced Cu on a Cu2O Surface from Machine Learning Atomic Simulation 从机器学习原子模拟看 Cu2O 表面还原铜的热力学和催化活性
IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1021/acsmaterialslett.4c00852
Sheng-Cai Zhu, Zi-Yan Chen, Zhi-pan Liu, Yanglong Hou
{"title":"Thermodynamics and Catalytic Activity of the Reduced Cu on a Cu2O Surface from Machine Learning Atomic Simulation","authors":"Sheng-Cai Zhu, Zi-Yan Chen, Zhi-pan Liu, Yanglong Hou","doi":"10.1021/acsmaterialslett.4c00852","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00852","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium Metal Oxyhalides NaMOCl4 (M = Nb, Ta) with High Ionic Conductivities 具有高离子电导率的金属氧卤化钠 NaMOCl4(M = Nb、Ta
IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1021/acsmaterialslett.4c01145
Tong Zhao, Bibek Samanta, Xabier Martínez de Irujo-Labalde, Grace Whang, Neelam Yadav, Marvin A. Kraft, P. Adelhelm, Michael Ryan Hansen, W. Zeier
{"title":"Sodium Metal Oxyhalides NaMOCl4 (M = Nb, Ta) with High Ionic Conductivities","authors":"Tong Zhao, Bibek Samanta, Xabier Martínez de Irujo-Labalde, Grace Whang, Neelam Yadav, Marvin A. Kraft, P. Adelhelm, Michael Ryan Hansen, W. Zeier","doi":"10.1021/acsmaterialslett.4c01145","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c01145","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Voltage and Cycling Stable Norbornene-Based Polycarbonate Electrolyte for Lithium Metal Battery 用于金属锂电池的高电压和循环稳定的降冰片烯基聚碳酸酯电解液
IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1021/acsmaterialslett.4c00987
Qian Zhang, Jinyuan Zhao, Xiaomeng Shi, Yanni Zhang, Jian Wang, Jing Wei, Junpeng Li, Chunjie Ma, Yaping Du
{"title":"High Voltage and Cycling Stable Norbornene-Based Polycarbonate Electrolyte for Lithium Metal Battery","authors":"Qian Zhang, Jinyuan Zhao, Xiaomeng Shi, Yanni Zhang, Jian Wang, Jing Wei, Junpeng Li, Chunjie Ma, Yaping Du","doi":"10.1021/acsmaterialslett.4c00987","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00987","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Electrochemical Water Splitting Electrocatalysts: Categorization by Parameters and Catalyst Types 电化学水分离电催化剂的最新进展:按参数和催化剂类型分类
IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1021/acsmaterialslett.4c00587
S. Perumal, Indira Pokhrel, Umair Muhammad, Xiaodong Shao, Yeonsu Han, Minseo Kim, Hyoyoung Lee
{"title":"Recent Advances in Electrochemical Water Splitting Electrocatalysts: Categorization by Parameters and Catalyst Types","authors":"S. Perumal, Indira Pokhrel, Umair Muhammad, Xiaodong Shao, Yeonsu Han, Minseo Kim, Hyoyoung Lee","doi":"10.1021/acsmaterialslett.4c00587","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00587","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterostructured Photocatalysts for Water Splitting and the Interfacial Charge Transfer 用于水分离和界面电荷转移的异质结构光催化剂
IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1021/acsmaterialslett.4c00706
Yazhuo Zheng, Erpeng Wang, Jian Zhou, Zhimei Sun
{"title":"Heterostructured Photocatalysts for Water Splitting and the Interfacial Charge Transfer","authors":"Yazhuo Zheng, Erpeng Wang, Jian Zhou, Zhimei Sun","doi":"10.1021/acsmaterialslett.4c00706","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00706","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Assembly of Organic Cages into 1D and 2D Hierarchical Superstructures Driven by Halogen-Bonding Interactions 卤素键相互作用驱动有机笼自组装成一维和二维分层超结构
IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1021/acsmaterialslett.4c00928
Yixin Wang, Gui-Fang Mu, Kuang-Shi Sun, Nan Yang, Qiang Yan
{"title":"Self-Assembly of Organic Cages into 1D and 2D Hierarchical Superstructures Driven by Halogen-Bonding Interactions","authors":"Yixin Wang, Gui-Fang Mu, Kuang-Shi Sun, Nan Yang, Qiang Yan","doi":"10.1021/acsmaterialslett.4c00928","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00928","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional OER Catalysts: Is There a Win-Win Solution for Their Activity and Stability? 二维 OER 催化剂:它们的活性和稳定性有双赢的解决方案吗?
IF 11.4 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-12 DOI: 10.1021/acsmaterialslett.4c00835
Min Ju, Yu Zhou, Feng Dong, Zhengxiao Guo, Jian Wang, Shihe Yang
Since the oxygen evolution reaction (OER) is the critical half reaction for highly efficient water splitting, OER catalysts with synergistically enhanced activity and stability are now under vigorous development. Two dimensional (2D) OER catalysts possess unique structural characteristics with tunable surface chemistry and electronic properties and thus have received extensive investigation. High activity and high stability of the catalysts are often incompatible because the highly active catalytic species on the 2D framework tend to degrade or reconstruct under the OER operating conditions, which is unfavorable for the long-term stability. In this review, we emphasize the relationship between activity and stability from the perspective of the mechanisms of the OER, the current progress, and the challenges over the widely explored 2D OER catalysts. We will analyze the reconstruction and degradation processes of these catalysts and outline rational strategies to synergistically enhance their activity and stability.
由于氧进化反应(OER)是高效水分离的关键半反应,目前正在大力开发具有协同增强活性和稳定性的 OER 催化剂。二维(2D)氧进化催化剂具有独特的结构特征和可调的表面化学和电子特性,因此得到了广泛的研究。催化剂的高活性和高稳定性往往是不相容的,因为二维框架上的高活性催化物种在 OER 工作条件下容易降解或重构,这不利于催化剂的长期稳定性。在本综述中,我们将从催化还原反应的机理、目前的进展以及广泛探索的二维催化还原反应催化剂所面临的挑战等角度,强调活性与稳定性之间的关系。我们将分析这些催化剂的重构和降解过程,并概述协同提高其活性和稳定性的合理策略。
{"title":"Two-Dimensional OER Catalysts: Is There a Win-Win Solution for Their Activity and Stability?","authors":"Min Ju, Yu Zhou, Feng Dong, Zhengxiao Guo, Jian Wang, Shihe Yang","doi":"10.1021/acsmaterialslett.4c00835","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00835","url":null,"abstract":"Since the oxygen evolution reaction (OER) is the critical half reaction for highly efficient water splitting, OER catalysts with synergistically enhanced activity and stability are now under vigorous development. Two dimensional (2D) OER catalysts possess unique structural characteristics with tunable surface chemistry and electronic properties and thus have received extensive investigation. High activity and high stability of the catalysts are often incompatible because the highly active catalytic species on the 2D framework tend to degrade or reconstruct under the OER operating conditions, which is unfavorable for the long-term stability. In this review, we emphasize the relationship between activity and stability from the perspective of the mechanisms of the OER, the current progress, and the challenges over the widely explored 2D OER catalysts. We will analyze the reconstruction and degradation processes of these catalysts and outline rational strategies to synergistically enhance their activity and stability.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilized Solid–Solid Interface for Solid-State Sodium Batteries Using Gradient Ion-Electron Conductive Phases Modified Sodium Metal Anode 利用梯度离子-电子导电相改性金属钠阳极实现固态钠电池的稳定固-固界面
IF 11.4 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-12 DOI: 10.1021/acsmaterialslett.4c00979
Yujie Yang, Ge Chang, Zheng Liu, Xingzhu Chen, Cong Huang, Yang Qian, Zhixiao Liu, Qunli Tang, Aiping Hu, Xiaohua Chen
The application of sodium anodes is essential for developing high-energy density, low-cost, and high-security solid-state sodium–metal batteries (SSSMBs) to replace commercial lithium ion batteries. However, poor interface contact, high resistance, and dendrite growth between the sodium anode and solid-state electrolyte (SSE) have hampered the application of SSSMBs. Herein, an ultrastable composite sodium anode with gradient ion-electron conductive phases was constructed through the in situ conversion and alloying reaction between SbF3 and sodium. The tightly contacted solid–solid interface between the composite anode and sodium superionic conductor oxide SSE is enriched with NaF and inside the anode is enriched with Na3Sb, which can inhibit the growth of sodium dendrites and accelerate the transport of bulk-phase sodium to the interface. Benefiting from these advantages, both symmetric and full cells assembled with such composite electrodes display excellent electrochemical performance. These results offer a novel composite anode design for the practical application of SSSMBs.
钠阳极的应用对于开发高能量密度、低成本和高安全性的固态钠金属电池(SSSMB)以取代商用锂离子电池至关重要。然而,钠阳极与固态电解质(SSE)之间的界面接触不良、高电阻和枝晶生长等问题阻碍了 SSSMB 的应用。本文通过 SbF3 与钠之间的原位转换和合金化反应,构建了一种具有梯度离子-电子导电相的超稳定复合钠阳极。复合阳极与钠超离子导体氧化物 SSE 之间紧密接触的固-固界面富含 NaF,阳极内部富含 Na3Sb,从而抑制了钠枝晶的生长,并加速了块相钠向界面的传输。得益于这些优势,使用这种复合电极组装的对称电池和全电池都显示出了优异的电化学性能。这些结果为 SSSMB 的实际应用提供了一种新颖的复合阳极设计。
{"title":"Stabilized Solid–Solid Interface for Solid-State Sodium Batteries Using Gradient Ion-Electron Conductive Phases Modified Sodium Metal Anode","authors":"Yujie Yang, Ge Chang, Zheng Liu, Xingzhu Chen, Cong Huang, Yang Qian, Zhixiao Liu, Qunli Tang, Aiping Hu, Xiaohua Chen","doi":"10.1021/acsmaterialslett.4c00979","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00979","url":null,"abstract":"The application of sodium anodes is essential for developing high-energy density, low-cost, and high-security solid-state sodium–metal batteries (SSSMBs) to replace commercial lithium ion batteries. However, poor interface contact, high resistance, and dendrite growth between the sodium anode and solid-state electrolyte (SSE) have hampered the application of SSSMBs. Herein, an ultrastable composite sodium anode with gradient ion-electron conductive phases was constructed through the in situ conversion and alloying reaction between SbF<sub>3</sub> and sodium. The tightly contacted solid–solid interface between the composite anode and sodium superionic conductor oxide SSE is enriched with NaF and inside the anode is enriched with Na<sub>3</sub>Sb, which can inhibit the growth of sodium dendrites and accelerate the transport of bulk-phase sodium to the interface. Benefiting from these advantages, both symmetric and full cells assembled with such composite electrodes display excellent electrochemical performance. These results offer a novel composite anode design for the practical application of SSSMBs.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetics of Space-Confined Inverse Temperature Crystallization: Gradients Enlarge Thin Perovskite Single Crystals 空间约束逆温结晶动力学:梯度扩大薄型过氧化物单晶
IF 11.4 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-12 DOI: 10.1021/acsmaterialslett.4c00740
Parinaz Moazzezi, Vishal Yeddu, Sergey Dayneko, Yuki Haruta, Mohammad Reza Kokaba, Devon Richtsmeier, Yameen Ahmed, Augusto Amaro, Magdalena Bazalova-Carter, Alejandra M. Navarrete-López, Makhsud I. Saidaminov
Space-confined inverse temperature crystallization (SC-ITC) is a prevalent technique for fabricating single-crystal perovskite solar cells, but its kinetics remain to be understood to increase the size of perovskite thin crystals, which are currently small and challenging to manage. Here we equipped SC-ITC with a camera to monitor its kinetics and found that the limitations on crystal size stem primarily from restricted solute diffusion and competing nucleation. To address these issues, we employed gradients in solution thickness to enhance solute transport and in temperature to mitigate competing nucleation. This led to a 4-fold increased size of the crystals up to 19 mm2, growth velocity up to 34 μm min–1, and solute flux up to 1.65 × 10–5 g mm–2 min–1. We explored the application of these crystals in X-ray-voltaics, achieving 1% power conversion efficiency under 40 keV X-ray radiation, showcasing their potential for energy harvesting in space and nuclear waste facilities.
空间约束反向温度结晶(SC-ITC)是制造单晶包晶体太阳能电池的一种普遍技术,但其动力学仍有待了解,以增大包晶体薄膜的尺寸,而目前的尺寸较小,管理起来具有挑战性。在此,我们为 SC-ITC 配备了摄像头,以监测其动力学,并发现晶体尺寸的限制主要源于溶质扩散受限和竞争成核。为了解决这些问题,我们采用了溶液厚度梯度来加强溶质传输,并采用温度梯度来缓解竞争成核。这使得晶体的尺寸增加了 4 倍,达到 19 平方毫米,生长速度达到 34 μm min-1,溶质通量达到 1.65 × 10-5 g mm-2 min-1。我们探索了这些晶体在 X 射线光伏中的应用,在 40 keV X 射线辐射下实现了 1%的功率转换效率,展示了它们在太空和核废料设施中收集能量的潜力。
{"title":"Kinetics of Space-Confined Inverse Temperature Crystallization: Gradients Enlarge Thin Perovskite Single Crystals","authors":"Parinaz Moazzezi, Vishal Yeddu, Sergey Dayneko, Yuki Haruta, Mohammad Reza Kokaba, Devon Richtsmeier, Yameen Ahmed, Augusto Amaro, Magdalena Bazalova-Carter, Alejandra M. Navarrete-López, Makhsud I. Saidaminov","doi":"10.1021/acsmaterialslett.4c00740","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00740","url":null,"abstract":"Space-confined inverse temperature crystallization (SC-ITC) is a prevalent technique for fabricating single-crystal perovskite solar cells, but its kinetics remain to be understood to increase the size of perovskite thin crystals, which are currently small and challenging to manage. Here we equipped SC-ITC with a camera to monitor its kinetics and found that the limitations on crystal size stem primarily from restricted solute diffusion and competing nucleation. To address these issues, we employed gradients in solution thickness to enhance solute transport and in temperature to mitigate competing nucleation. This led to a 4-fold increased size of the crystals up to 19 mm<sup>2</sup>, growth velocity up to 34 μm min<sup>–1</sup>, and solute flux up to 1.65 × 10<sup>–5</sup> g mm<sup>–2</sup> min<sup>–1</sup>. We explored the application of these crystals in X-ray-voltaics, achieving 1% power conversion efficiency under 40 keV X-ray radiation, showcasing their potential for energy harvesting in space and nuclear waste facilities.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Active and Robust Air Electrode for Reversible Protonic Ceramic Cells: Advanced Performance Achieved by Low-Lewis-Acid-Strength Cation Doping Strategy 用于可逆质子陶瓷电池的高活性、坚固的空气电极:通过低路易斯酸强度阳离子掺杂策略实现先进性能
IF 11.4 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-11 DOI: 10.1021/acsmaterialslett.4c00806
Chenghao Yang, Jin Li, Caichen Yang, Yitong Li, Ao Hu, Jian Pu, Bo Chi
Reversible protonic ceramic cells (RPCCs) are highly regarded as advancing energy conversion devices with broad application prospects in electricity supply and power integration. However, the performance of the air electrode remains a critical challenge for RPCC technology. In this study, a highly active and robust air electrode catalyst Ba0.95K0.05Co0.2Zn0.2Ga0.2Zr0.2Y0.2O3−δ (BKCX) is explored based on the high-entropy design and low-Lewis-acid-strength cation (K+) doping. The high-entropy structure ensures the thermodynamic stability of the air electrode. The doping of low-Lewis-acid-strength cation (K+) facilitates the steam adsorption and the protonation processes. At 700 °C, RPCC with BKCX air electrode demonstrates a peak power density of 1.33 W cm–2 in the fuel cell mode and an electrolytic current density of 2.81 A cm–2 at 1.3 V in the electrolysis cell mode. The RPCC maintains efficient operation reversely for hundreds of hours without observable performance degradation and structural collapse.
可逆质子陶瓷电池(RPCC)是一种先进的能量转换设备,在电力供应和电力集成领域具有广阔的应用前景,备受推崇。然而,空气电极的性能仍然是 RPCC 技术面临的关键挑战。本研究基于高熵设计和低路易斯酸强度阳离子(K+)掺杂,探索了一种高活性、高稳定性的空气电极催化剂 Ba0.95K0.05Co0.2Zn0.2Ga0.2Zr0.2Y0.2O3-δ (BKCX)。高熵结构确保了空气电极的热力学稳定性。低路易斯酸强度阳离子(K+)的掺杂促进了蒸汽吸附和质子化过程。在 700 °C 时,采用 BKCX 空气电极的 RPCC 在燃料电池模式下的峰值功率密度为 1.33 W cm-2,在电解池模式下,1.3 V 的电解电流密度为 2.81 A cm-2。RPCC 可反向保持高效运行数百小时,而不会出现明显的性能下降和结构崩溃。
{"title":"A Highly Active and Robust Air Electrode for Reversible Protonic Ceramic Cells: Advanced Performance Achieved by Low-Lewis-Acid-Strength Cation Doping Strategy","authors":"Chenghao Yang, Jin Li, Caichen Yang, Yitong Li, Ao Hu, Jian Pu, Bo Chi","doi":"10.1021/acsmaterialslett.4c00806","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c00806","url":null,"abstract":"Reversible protonic ceramic cells (RPCCs) are highly regarded as advancing energy conversion devices with broad application prospects in electricity supply and power integration. However, the performance of the air electrode remains a critical challenge for RPCC technology. In this study, a highly active and robust air electrode catalyst Ba<sub>0.95</sub>K<sub>0.05</sub>Co<sub>0.2</sub>Zn<sub>0.2</sub>Ga<sub>0.2</sub>Zr<sub>0.2</sub>Y<sub>0.2</sub>O<sub>3−δ</sub> (BKCX) is explored based on the high-entropy design and low-Lewis-acid-strength cation (K<sup>+</sup>) doping. The high-entropy structure ensures the thermodynamic stability of the air electrode. The doping of low-Lewis-acid-strength cation (K<sup>+</sup>) facilitates the steam adsorption and the protonation processes. At 700 °C, RPCC with BKCX air electrode demonstrates a peak power density of 1.33 W cm<sup>–2</sup> in the fuel cell mode and an electrolytic current density of 2.81 A cm<sup>–2</sup> at 1.3 V in the electrolysis cell mode. The RPCC maintains efficient operation reversely for hundreds of hours without observable performance degradation and structural collapse.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Materials Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1