首页 > 最新文献

The Journal of Physical Chemistry A最新文献

英文 中文
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10
Xin-Meng Liu, Dong-Xia Zhao* and Zhong-Zhi Yang, 
{"title":"","authors":"Xin-Meng Liu, Dong-Xia Zhao* and Zhong-Zhi Yang, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 27","pages":"XXX-XXX 12260–12268"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c01773","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144587075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transition from Noncovalent Interaction to Covalent Bond Based on One-Electron Potential, Quantum Chemical Topology, and Molecular Face Theory. 基于单电子势、量子化学拓扑和分子面理论的从非共价相互作用到共价键的转变。
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10 Epub Date: 2025-06-30 DOI: 10.1021/acs.jpca.5c01773
Xin-Meng Liu, Dong-Xia Zhao, Zhong-Zhi Yang

Noncovalent interactions and covalent bonds can be distinguished via quantum chemical topology analysis and molecular face theory, which are based on the potential acting on one electron in a molecule or molecular system (PAEM). A covalent bond forms when a PAEM bond critical point (BCP) occurs on the line connecting two atoms and when their molecular faces contact or fuse together, whereas a noncovalent interaction occurs between two adjacent atoms or chemical species when their molecular faces remain separate. The force acting on one electron within a molecule, which starts at infinity and ends at the BCP, forms nonoverlapping boundary surfaces that partition a molecule into distinct atomic regions. This is demonstrated with the following example reactions: H + H → H2, H + X → HX (X = F, Cl, Br, I), O (1D) + H2 → H2O, and S (1D) + H2 → H2S. The exploration of the physical quantities at PAEM critical points, such as the eigenvalues of the Hessian matrix, ellipticity, and electron interflow frequency, reveals their changing trends during the transition from a noncovalent interaction to a covalent bond or vice versa. These changes can help predict chemical bond formation or breakage, providing insight into chemical bonding.

非共价相互作用和共价键可以通过量子化学拓扑分析和分子面理论来区分,它们是基于作用于分子或分子系统中单个电子的势。当PAEM键临界点(BCP)出现在两个原子的连接线上,当它们的分子面接触或融合在一起时,形成共价键,而当两个相邻的原子或化学物质的分子面保持分离时,它们之间发生非共价相互作用。作用在分子内一个电子上的力,从无穷远处开始,在BCP处结束,形成不重叠的边界表面,将分子划分为不同的原子区域。下面的例子说明了这一点:H + H→H2, H + X→HX (X = F, Cl, Br, I), O (1D) + H2→H2O和S (1D) + H2→H2S。对PAEM临界点的物理量,如Hessian矩阵的特征值、椭圆度和电子互流频率的探索,揭示了它们在从非共价相互作用到共价键或反之亦然的转变过程中的变化趋势。这些变化可以帮助预测化学键的形成或破坏,从而深入了解化学键。
{"title":"Transition from Noncovalent Interaction to Covalent Bond Based on One-Electron Potential, Quantum Chemical Topology, and Molecular Face Theory.","authors":"Xin-Meng Liu, Dong-Xia Zhao, Zhong-Zhi Yang","doi":"10.1021/acs.jpca.5c01773","DOIUrl":"10.1021/acs.jpca.5c01773","url":null,"abstract":"<p><p>Noncovalent interactions and covalent bonds can be distinguished via quantum chemical topology analysis and molecular face theory, which are based on the potential acting on one electron in a molecule or molecular system (PAEM). A covalent bond forms when a PAEM bond critical point (BCP) occurs on the line connecting two atoms and when their molecular faces contact or fuse together, whereas a noncovalent interaction occurs between two adjacent atoms or chemical species when their molecular faces remain separate. The force acting on one electron within a molecule, which starts at infinity and ends at the BCP, forms nonoverlapping boundary surfaces that partition a molecule into distinct atomic regions. This is demonstrated with the following example reactions: H + H → H<sub>2</sub>, H + <i>X</i> → H<i>X</i> (<i>X</i> = F, Cl, Br, I), O (<sup>1</sup><i>D</i>) + H<sub>2</sub> → H<sub>2</sub>O, and S (<sup>1</sup><i>D</i>) + H<sub>2</sub> → H<sub>2</sub>S. The exploration of the physical quantities at PAEM critical points, such as the eigenvalues of the Hessian matrix, ellipticity, and electron interflow frequency, reveals their changing trends during the transition from a noncovalent interaction to a covalent bond or vice versa. These changes can help predict chemical bond formation or breakage, providing insight into chemical bonding.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"6107-6120"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144525518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Mechanism of DABCO-Catalyzed Diastereoselective Cyclization for the Synthesis of Azetidine Nitrones. 探讨dabco催化非对映选择性环化合成氮杂环酮的机理。
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10 Epub Date: 2025-06-30 DOI: 10.1021/acs.jpca.5c02187
Rui-Ping Huo, Xiang Zhang, Kai-Xin Xie, Cai-Feng Zhang, Meng-Yao Li

The mechanistic details of the DABCO-catalyzed diastereoselective cyclization between β-alkyl nitroolefins and alkylidene malononitriles were elucidated by using dispersion-corrected density functional theory (DFT-D3) calculations at the M06-2X/6-311G(d,p) level with SMD solvation (dichloromethane). The reaction proceeds through four consecutive steps: (i) deprotonation and Michael addition; (ii) 1,3-proton transfer; (iii) Pinner-type cyclization; and (iv) ring contraction. Our computational results demonstrate DABCO's dual catalytic role in both proton abstraction and proton shuttle mechanisms, rationalizing the observed diastereoselectivity. The rate-determining step (ring contraction) exhibits a moderate barrier of 24.9 kcal/mol, consistent with experimental conditions, and the exclusion of alternative pathways (ΔG > 70 kcal/mol) confirms the mechanistic preference. This study provides fundamental insights into stereochemical control and establishes a theoretical framework for designing related organocatalytic transformations.

采用分散化校正密度泛函理论(DFT-D3)在M06-2X/6-311G(d,p)水平上,用SMD溶剂(二氯甲烷)对dabco催化β-烷基硝基烯烃和烷基二腈之间非对映选择性环化的机理细节进行了阐明。反应通过四个连续的步骤进行:(i)去质子化和Michael加成;(ii) 1,3质子转移;(iii)销纳式循环;(四)环收缩。我们的计算结果证明了DABCO在质子提取和质子穿梭机制中的双重催化作用,合理地解释了观察到的非对映选择性。速率决定步骤(环收缩)显示出24.9 kcal/mol的中等势垒,与实验条件一致,并且排除其他途径(ΔG‡> 70 kcal/mol)证实了机制偏好。该研究为立体化学控制提供了基础见解,并为设计相关的有机催化转化建立了理论框架。
{"title":"Exploring the Mechanism of DABCO-Catalyzed Diastereoselective Cyclization for the Synthesis of Azetidine Nitrones.","authors":"Rui-Ping Huo, Xiang Zhang, Kai-Xin Xie, Cai-Feng Zhang, Meng-Yao Li","doi":"10.1021/acs.jpca.5c02187","DOIUrl":"10.1021/acs.jpca.5c02187","url":null,"abstract":"<p><p>The mechanistic details of the DABCO-catalyzed diastereoselective cyclization between β-alkyl nitroolefins and alkylidene malononitriles were elucidated by using dispersion-corrected density functional theory (DFT-D3) calculations at the M06-2X/6-311G(d,p) level with SMD solvation (dichloromethane). The reaction proceeds through four consecutive steps: (i) deprotonation and Michael addition; (ii) 1,3-proton transfer; (iii) Pinner-type cyclization; and (iv) ring contraction. Our computational results demonstrate DABCO's dual catalytic role in both proton abstraction and proton shuttle mechanisms, rationalizing the observed diastereoselectivity. The rate-determining step (ring contraction) exhibits a moderate barrier of 24.9 kcal/mol, consistent with experimental conditions, and the exclusion of alternative pathways (Δ<i>G</i><sup>‡</sup> > 70 kcal/mol) confirms the mechanistic preference. This study provides fundamental insights into stereochemical control and establishes a theoretical framework for designing related organocatalytic transformations.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"5983-5992"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144525512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10
Komei Akazawa, Shun Ito, Yuya Hamasaki, Kiichirou Koyasu and Tatsuya Tsukuda*, 
{"title":"","authors":"Komei Akazawa,&nbsp;Shun Ito,&nbsp;Yuya Hamasaki,&nbsp;Kiichirou Koyasu and Tatsuya Tsukuda*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 27","pages":"XXX-XXX 12260–12268"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c03160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144587079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10
Garima S. Dobhal,  and , Tiffany R. Walsh*, 
{"title":"","authors":"Garima S. Dobhal,&nbsp; and ,&nbsp;Tiffany R. Walsh*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 27","pages":"XXX-XXX 12260–12268"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c01797","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144587082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10
Bin Chen*, 
{"title":"","authors":"Bin Chen*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 27","pages":"XXX-XXX 12260–12268"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c02843","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144587125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10
Nia Pollard, A’Laura C. Hines and Andre Z. Clayborne*, 
{"title":"","authors":"Nia Pollard,&nbsp;A’Laura C. Hines and Andre Z. Clayborne*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 27","pages":"XXX-XXX 12260–12268"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c01404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144587151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 27","pages":"XXX-XXX 12260–12268"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/jxv129i027_1956993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144587152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HOMO-LUMO Gap of [Au38(SC2H4Ph)24]0 Estimated by Photoelectron Spectroscopy on Its MALDI-Generated Anion. [Au38(SC2H4Ph)24]0在maldi生成阴离子上的HOMO-LUMO间隙光电子能谱估计
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10 Epub Date: 2025-06-25 DOI: 10.1021/acs.jpca.5c03160
Komei Akazawa, Shun Ito, Yuya Hamasaki, Kiichirou Koyasu, Tatsuya Tsukuda

Gas-phase photoelectron spectroscopy (PES) was performed on the mass-selected beams of [Au25(PET)18]- and [Au38(PET)24]- (PET = SC2H4Ph) desorbed by a matrix-assisted laser desorption/ionization (MALDI) process. The PE spectrum of [Au25(PET)18]- was consistent with that generated by the electrospray ionization (ESI) method, indicating the compatibility of MALDI and ESI for the ionization method. The energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of [Au38(PET)24]0 was estimated to be 0.78 ± 0.06 eV from the energy difference between the peaks at the lowest and second lowest electron binding energies. The HOMO-LUMO gap was smaller than those determined in solution by voltammetry (1.0 eV) and optical absorption spectroscopy (0.92 eV). Density functional theory calculations suggested that the difference in the HOMO-LUMO gap was due to the elongation of the bi-icosahedral Au23 core of [Au38(PET)24]- as compared to that in [Au38(PET)24]0 by the accommodation of an excess electron into an antibonding orbital.

采用基质辅助激光解吸/电离(MALDI)工艺对[Au25(PET)18]-和[Au38(PET)24]- (PET = SC2H4Ph)光束进行了气相光电子能谱(PES)分析。[Au25(PET)18]-的PE谱与电喷雾电离(ESI)法生成的PE谱一致,表明MALDI和ESI对电喷雾电离法的相容性。[Au38(PET)24]0的最高已占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)之间的能隙为0.78±0.06 eV。HOMO-LUMO的间隙小于溶液中伏安法(1.0 eV)和光吸收光谱法(0.92 eV)测定的间隙。密度泛函理论计算表明,HOMO-LUMO间隙的差异是由于[Au38(PET)24]-与[Au38(PET)24]0相比,[Au38(PET)24]-的双二十面体Au23核的延伸,这是由于多余的电子被容纳到反键轨道中。
{"title":"HOMO-LUMO Gap of [Au<sub>38</sub>(SC<sub>2</sub>H<sub>4</sub>Ph)<sub>24</sub>]<sup>0</sup> Estimated by Photoelectron Spectroscopy on Its MALDI-Generated Anion.","authors":"Komei Akazawa, Shun Ito, Yuya Hamasaki, Kiichirou Koyasu, Tatsuya Tsukuda","doi":"10.1021/acs.jpca.5c03160","DOIUrl":"10.1021/acs.jpca.5c03160","url":null,"abstract":"<p><p>Gas-phase photoelectron spectroscopy (PES) was performed on the mass-selected beams of [Au<sub>25</sub>(PET)<sub>18</sub>]<sup>-</sup> and [Au<sub>38</sub>(PET)<sub>24</sub>]<sup>-</sup> (PET = SC<sub>2</sub>H<sub>4</sub>Ph) desorbed by a matrix-assisted laser desorption/ionization (MALDI) process. The PE spectrum of [Au<sub>25</sub>(PET)<sub>18</sub>]<sup>-</sup> was consistent with that generated by the electrospray ionization (ESI) method, indicating the compatibility of MALDI and ESI for the ionization method. The energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of [Au<sub>38</sub>(PET)<sub>24</sub>]<sup>0</sup> was estimated to be 0.78 ± 0.06 eV from the energy difference between the peaks at the lowest and second lowest electron binding energies. The HOMO-LUMO gap was smaller than those determined in solution by voltammetry (1.0 eV) and optical absorption spectroscopy (0.92 eV). Density functional theory calculations suggested that the difference in the HOMO-LUMO gap was due to the elongation of the bi-icosahedral Au<sub>23</sub> core of [Au<sub>38</sub>(PET)<sub>24</sub>]<sup>-</sup> as compared to that in [Au<sub>38</sub>(PET)<sub>24</sub>]<sup>0</sup> by the accommodation of an excess electron into an antibonding orbital.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"6043-6048"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144482505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Evolution of Boron Clusters upon Copper Doping in CuBx- (x = 4-6). cux - (x = 4-6)中铜掺杂后硼团簇的结构演化。
IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10 Epub Date: 2025-06-27 DOI: 10.1021/acs.jpca.5c02881
Anton S Pozdeev, Hyun Wook Choi, Wei-Jia Chen, Lai-Sheng Wang, Ivan A Popov

Photoelectron spectroscopy and theoretical calculations are combined to elucidate the structures and chemical bonding of small boron clusters doped with a copper atom, CuBx- (x = 4-6). Relatively complex spectral features are observed and are interpreted by comparison with the theoretical results. Predicted global minimum structures of CuBx- (x = 4-6) evince that the Cu atom binds to an apex B atom in each cluster and does not significantly alter the planar boron framework of the corresponding Bx- clusters. Multielectronic transitions (shakeup processes) are observed in all three systems, a manifestation of strong electron correlation effects. Chemical bonding analyses show that the copper atom preferentially binds to the apex sites with the highest electron localization to form a Cu-B covalent bond. The structures and bonding of CuBx- (x = 4-6) are compared with those of the bare Bx- and the Cu2Bx- clusters, providing new insights into the structural and electronic evolution of Cu-doped boron clusters and the transition from Cu-B covalent bonding to ionic bonding.

光电子能谱和理论计算相结合,阐明了掺杂铜原子cux - (x = 4-6)的小硼簇的结构和化学键。观测到相对复杂的光谱特征,并与理论结果进行了比较解释。预测的CuBx- (x = 4-6)的全局最小结构表明,在每个簇中,Cu原子与顶端的B原子结合,并且没有显著改变相应Bx-簇的平面硼框架。在这三种体系中都观察到多电子跃迁(振荡过程),这是强电子相关效应的表现。化学键分析表明,铜原子优先与电子定位最高的顶点位点结合,形成Cu-B共价键。将cux - (x = 4-6)与裸Bx-和Cu2Bx-团簇的结构和成键进行了比较,为cu掺杂硼团簇的结构和电子演化以及Cu-B共价键向离子键的转变提供了新的见解。
{"title":"Structural Evolution of Boron Clusters upon Copper Doping in CuB<sub><i>x</i></sub><sup>-</sup> (<i>x</i> = 4-6).","authors":"Anton S Pozdeev, Hyun Wook Choi, Wei-Jia Chen, Lai-Sheng Wang, Ivan A Popov","doi":"10.1021/acs.jpca.5c02881","DOIUrl":"10.1021/acs.jpca.5c02881","url":null,"abstract":"<p><p>Photoelectron spectroscopy and theoretical calculations are combined to elucidate the structures and chemical bonding of small boron clusters doped with a copper atom, CuB<sub><i>x</i></sub><sup>-</sup> (<i>x</i> = 4-6). Relatively complex spectral features are observed and are interpreted by comparison with the theoretical results. Predicted global minimum structures of CuB<sub><i>x</i></sub><sup>-</sup> (<i>x</i> = 4-6) evince that the Cu atom binds to an apex B atom in each cluster and does not significantly alter the planar boron framework of the corresponding B<sub><i>x</i></sub><sup>-</sup> clusters. Multielectronic transitions (shakeup processes) are observed in all three systems, a manifestation of strong electron correlation effects. Chemical bonding analyses show that the copper atom preferentially binds to the apex sites with the highest electron localization to form a Cu-B covalent bond. The structures and bonding of CuB<sub><i>x</i></sub><sup>-</sup> (<i>x</i> = 4-6) are compared with those of the bare B<sub><i>x</i></sub><sup>-</sup> and the Cu<sub>2</sub>B<sub><i>x</i></sub><sup>-</sup> clusters, providing new insights into the structural and electronic evolution of Cu-doped boron clusters and the transition from Cu-B covalent bonding to ionic bonding.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"6024-6033"},"PeriodicalIF":2.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144504223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Journal of Physical Chemistry A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1