首页 > 最新文献

Chemical Reviews最新文献

英文 中文
Correction to “P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis” 对 "不对称催化中的 P-Stereogenic 磷配体 "的更正
IF 62.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1021/acs.chemrev.4c00658
Tsuneo Imamoto
The original version of this review article contained a number of mistakes including the overlooking of some important achievements and references. The author wishes to correct the mistakes, and sincerely apologizes to the readers and reference authors for any confusion and inconvenience. The following four P-stereogenic phosphorus ligands, <b>LA1</b>,<sup>A</sup> (1)<sup>−A</sup> (3) OXPAMP,<sup>A</sup> (4)<sup>,A</sup> (5)<sup>,351</sup> QUIPHOS,<sup>A</sup> (6)<sup>−A</sup> (9) and <i>t</i>-OctBisP*,<sup>A</sup> (10) should be added in Figure 3. There are errors in the description regarding <b>L26</b> in Figure 3, and they are corrected as shown below. Owing to these additions and corrections, Figure 3 should be replaced by the figure below. Figure 3. P-Stereogenic phosphorus ligands from 1968 to 2000. The numbers in brackets are the enantiomeric excesses of the products obtained in catalytic asymmetric reactions with the ligands: (a) Rh-catalyzed hydrogenation of functionalized alkenes, mostly α-dehydroamino acid derivatives; (b) Pd-catalyzed cross-coupling of 1-phenylethylmagnesium chloride and β-bromostyrene; (c) Pd-catalyzed allylic substitution reaction; (d) Rh-catalyzed hydrosilylation of simple ketones; (e) Kinetic resolution of racemic secondary alcohols by enantioselective acylation; (f) Rh-catalyzed hydroformylation of styrenes; (g) Ni-catalyzed cycloisomerization of 1,6-dienes; (h) Cu-catalyzed Diels−Alder reaction of 3-acryloyl-1,3-oxazolidine-2-one with cyclopentadiene. The following two <i>C</i><sub>2</sub>-symmetric P-stereogenic phosphorus ligands, BeePHOS<sup>227</sup> and JDayPhose,<sup>A</sup> (11) should be added in Figure 5.<img alt="" src="/cms/10.1021/acs.chemrev.4c00658/asset/images/medium/cr4c00658_0015.gif"/> The corrected Figure 5 is provided below. Figure 5. <i>C</i><sub>2</sub>-Symmetric P-stereogenic bisphosphorus ligands and analogous polydentate ligands reported from 2001 to 2023. Page 8664, ligand <b>L81</b> in Figure 6: 2-<i>i</i>-PrC<sub>6</sub>H<sub>4</sub> and 2-<i>t</i>-BuC<sub>6</sub>H<sub>4</sub> are typographical errors for 2-<i>i</i>-PrOC<sub>6</sub>H<sub>4</sub> and 2-<i>t</i>-BuOC<sub>6</sub>H<sub>4</sub>, and they are corrected, as shown below.<img alt="" src="/cms/10.1021/acs.chemrev.4c00658/asset/images/medium/cr4c00658_0004.gif"/> Pages 8669 and 8675, in Tables 1 and 2: The Rh-catalyzed asymmetric hydrogenations of methyl (<i>Z</i>)-α-acetylaminocinnamate (MAC) and (<i>Z</i>)-α-acetylaminocinnamic acid with the use of <i>t</i>-Oct-BisP*, BeePHOS, and JDayPhos are added in Table 1. Some typographical errors in Table 1 are also corrected. The results of the Rh-catalyzed asymmetric hydrogenations of representative β-dehydroamino acid esters with <b>L44</b> and JDayPhos are added in Table 2, along with the correction of some typographical errors. The corrected Tables 1 and 2 are provided here. An A preceding a reference number refers to a reference in this Addition and Correction. This author failed
这篇综述文章的原始版本存在一些错误,包括忽略了一些重要成果和参考文献。作者希望纠正这些错误,并对给读者和参考文献作者造成的困惑和不便表示诚挚的歉意。图 3 中应添加以下四种致稳磷配体:LA1,A (1)-A (3) OXPAMP,A (4)-A (5)、351 QUIPHOS,A (6)-A (9) 和 t-OctBisP*,A (10)。图 3 中关于 L26 的描述有误,现更正如下。由于这些补充和更正,图 3 应由下图取代。图 3.1968 年至 2000 年的 P-Stereogenic 磷配体。括号中的数字是与配体进行催化不对称反应所得到产物的对映体过量:(a) Rh 催化的官能化烯氢化反应,主要是 α-脱氢氨基酸衍生物;(b) Pd 催化的 1-苯基乙基氯化镁和 β-溴苯乙烯的交叉偶联反应;(c) Pd 催化的烯丙基取代反应;(d) Rh 催化的简单酮的氢化硅烷化反应;(e) 外消旋仲醇对映体选择性酰化的动力学解析;(f) Rh 催化的苯乙烯氢甲酰化反应;(g) Ni 催化的 1,6 二烯环异构化反应;(h) Cu 催化的 3-丙烯酰基-1,3-恶唑烷-2-酮与环戊二烯的 Diels-Alder 反应。图 5 中应添加以下两个 C2 对称 P-stereogenic 磷配体 BeePHOS227 和 JDayPhose,A (11)。更正后的图 5 如下。图 5.2001 年至 2023 年期间报道的 C2 对称 P-stereogenic 双磷配体和类似的多齿配体。第 8664 页,图 6 中的配体 L81:2-i-PrC6H4 和 2-t-BuC6H4 是 2-i-PrOC6H4 和 2-t-BuOC6H4 的排印错误,现更正如下。第 8669 和 8675 页,表 1 和表 2:表 1 中增加了使用 t-Oct-BisP*、BeePHOS 和 JDayPhos 的 (Z)-α- 乙酰氨基肉桂酸甲酯 (MAC) 和 (Z)-α- 乙酰氨基肉桂酸的 Rh 催化不对称氢化反应。表 1 中的一些印刷错误也得到了更正。表 2 中增加了使用 L44 和 JDayPhos 对代表性 β-脱氢氨基酸酯进行 Rh 催化不对称氢化反应的结果,并更正了一些印刷错误。现提供更正后的表 1 和表 2。参考文献编号前的 A 指的是本增补和更正中的参考文献。该作者没有描述 Stephan、Mohar 和合作者报告的非常重要的成果:方案 A1 应位于方案 32 之前:第 8679 页:方案 A2 应添加到方案 34.A (11) 之后:第 8679 页:应在方案 36.219 之后添加方案 A3 第 8693 页,方案 109:方案 109 中的结构有误。此处提供更正后的方案。第 8716 页,右侧:方案 232 应替换为以下内容:其他补充和更正如下:第 8660 页,左侧,第 24 行,参考编号:"33-39,74-110 "应替换为 "33-39,74-110,243,351,A (1-A10)"(参考号前的 A 指本增补和更正中的参考号)。第 8663 页,右侧第 27 行,参考文献 183、184、219:应添加以下参考文献:Stephan,M.;Sterk,D.;Zupancic,B.;Mohar,B. Profiling the tunable R-SMS-Phos structure in the rhodium(I)-catalyzed hydrogenation of olefins:the last stand?Org.Biomol.Chem.2011, 9, 5266-5271.第 8670 页,左侧第 7 行,参考文献编号:"71,319-328 "应改为 "50,69,71,319-328"。第 8674 页,左侧,自下而上第 5 行,参考编号:"42,44,169,184,186,189,202,229,235-238,252,374-376 "应改为 "42,44,169,180,184,186,189,202,219,229,235-238,252,374-376"。第 8679 页,方案 33 中:应将"(S)-BulkyP*"替换为"(R)-BulkyP*"。第 8680 页,方案 41 中:"(bnd) "应改为"(nbd)"。第 8683 页,左侧第 1 行:"Rh/Binapine "应改为 "Rh/TangPhos"。第 8685 页,右侧,方案 66 中:第 8685 页,右侧,方案 66 中:"103 产率 51%"应改为 "104 产率 51%"。第 8686 页,右侧,方案 72 中:"MeO "应改为 "MeOCH2"。第 8704 页:方案 174 的标题中有一处印刷错误。应将"(145) "改为"(154)"。第 8708 页,右侧第 3 行:"BIBOPO "应改为 "BIBOP"。第 8712 页,右侧,自下而上第 1 行:"48% yield "应改为 "46% yield"。第 8714 页,右侧,第 7 行,参考文献 661-666:应添加以下参考文献:Ni, H.; Chan, W.-L.; Lu, Y. Phosphine-Catalyzed Asymmetric Reactions.Chem.Rev. 2018, 118, 9344-9411。本文引用了 12 篇其他出版物。本文尚未被其他出版物引用。
{"title":"Correction to “P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis”","authors":"Tsuneo Imamoto","doi":"10.1021/acs.chemrev.4c00658","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00658","url":null,"abstract":"The original version of this review article contained a number of mistakes including the overlooking of some important achievements and references. The author wishes to correct the mistakes, and sincerely apologizes to the readers and reference authors for any confusion and inconvenience. The following four P-stereogenic phosphorus ligands, &lt;b&gt;LA1&lt;/b&gt;,&lt;sup&gt;A&lt;/sup&gt; (1)&lt;sup&gt;−A&lt;/sup&gt; (3) OXPAMP,&lt;sup&gt;A&lt;/sup&gt; (4)&lt;sup&gt;,A&lt;/sup&gt; (5)&lt;sup&gt;,351&lt;/sup&gt; QUIPHOS,&lt;sup&gt;A&lt;/sup&gt; (6)&lt;sup&gt;−A&lt;/sup&gt; (9) and &lt;i&gt;t&lt;/i&gt;-OctBisP*,&lt;sup&gt;A&lt;/sup&gt; (10) should be added in Figure 3. There are errors in the description regarding &lt;b&gt;L26&lt;/b&gt; in Figure 3, and they are corrected as shown below. Owing to these additions and corrections, Figure 3 should be replaced by the figure below. Figure 3. P-Stereogenic phosphorus ligands from 1968 to 2000. The numbers in brackets are the enantiomeric excesses of the products obtained in catalytic asymmetric reactions with the ligands: (a) Rh-catalyzed hydrogenation of functionalized alkenes, mostly α-dehydroamino acid derivatives; (b) Pd-catalyzed cross-coupling of 1-phenylethylmagnesium chloride and β-bromostyrene; (c) Pd-catalyzed allylic substitution reaction; (d) Rh-catalyzed hydrosilylation of simple ketones; (e) Kinetic resolution of racemic secondary alcohols by enantioselective acylation; (f) Rh-catalyzed hydroformylation of styrenes; (g) Ni-catalyzed cycloisomerization of 1,6-dienes; (h) Cu-catalyzed Diels−Alder reaction of 3-acryloyl-1,3-oxazolidine-2-one with cyclopentadiene. The following two &lt;i&gt;C&lt;/i&gt;&lt;sub&gt;2&lt;/sub&gt;-symmetric P-stereogenic phosphorus ligands, BeePHOS&lt;sup&gt;227&lt;/sup&gt; and JDayPhose,&lt;sup&gt;A&lt;/sup&gt; (11) should be added in Figure 5.&lt;img alt=\"\" src=\"/cms/10.1021/acs.chemrev.4c00658/asset/images/medium/cr4c00658_0015.gif\"/&gt; The corrected Figure 5 is provided below. Figure 5. &lt;i&gt;C&lt;/i&gt;&lt;sub&gt;2&lt;/sub&gt;-Symmetric P-stereogenic bisphosphorus ligands and analogous polydentate ligands reported from 2001 to 2023. Page 8664, ligand &lt;b&gt;L81&lt;/b&gt; in Figure 6: 2-&lt;i&gt;i&lt;/i&gt;-PrC&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt; and 2-&lt;i&gt;t&lt;/i&gt;-BuC&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt; are typographical errors for 2-&lt;i&gt;i&lt;/i&gt;-PrOC&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt; and 2-&lt;i&gt;t&lt;/i&gt;-BuOC&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;, and they are corrected, as shown below.&lt;img alt=\"\" src=\"/cms/10.1021/acs.chemrev.4c00658/asset/images/medium/cr4c00658_0004.gif\"/&gt; Pages 8669 and 8675, in Tables 1 and 2: The Rh-catalyzed asymmetric hydrogenations of methyl (&lt;i&gt;Z&lt;/i&gt;)-α-acetylaminocinnamate (MAC) and (&lt;i&gt;Z&lt;/i&gt;)-α-acetylaminocinnamic acid with the use of &lt;i&gt;t&lt;/i&gt;-Oct-BisP*, BeePHOS, and JDayPhos are added in Table 1. Some typographical errors in Table 1 are also corrected. The results of the Rh-catalyzed asymmetric hydrogenations of representative β-dehydroamino acid esters with &lt;b&gt;L44&lt;/b&gt; and JDayPhos are added in Table 2, along with the correction of some typographical errors. The corrected Tables 1 and 2 are provided here. An A preceding a reference number refers to a reference in this Addition and Correction. This author failed ","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":62.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase Merocyanines:溶液、固态和气相中的电子结构和光谱学
IF 62.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1021/acs.chemrev.4c00317
Andrii V. Kulinich, Alexander A. Ishchenko
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure–property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D−π–A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Merocyanines 具有易于调整的电子结构,可以说是用途最广的功能性染料,通过改变供体/受体(D/A)端基团和 π 共轭聚甲基链,可以对其进行量身定制。它们具有多种光谱特性,如强溶变色性、高偏振性和超偏振性以及敏化能力,这些特性促使人们对它们在光电转换材料、非线性光学、光存储、荧光探针等领域的应用进行了广泛的研究。显而易见,了解内在的结构-性能关系是成功设计功能性染料的先决条件。对于花青素来说,这些规律性的探索已有 70 多年的历史,但直到过去 30 年,这些研究才从颜色和溶解变色理论扩展到其基态和激发态的电子结构。本综述概述了理解梅花翠类化合物多变性质所必需的基本原理,重点是了解内部(化学结构)和外部(分子间相互作用)因素对 D-π-A 发色团电子对称性的影响。在非极性多烯、理想多亚甲基和齐聚多烯这三种虚拟状态相互作用的背景下,回顾了不同介质中美花青素结构和性质的研究。
{"title":"Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase","authors":"Andrii V. Kulinich, Alexander A. Ishchenko","doi":"10.1021/acs.chemrev.4c00317","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00317","url":null,"abstract":"Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure–property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D−π–A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":62.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaching New Heights in Genetic Code Manipulation with High Throughput Screening 利用高通量筛选技术实现遗传密码操作的新高度
IF 62.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-17 DOI: 10.1021/acs.chemrev.4c00329
Briana R. Lino, Sean J. Williams, Michelle E. Castor, James A. Van Deventer
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
蛋白质的化学和物理特性受到 20 个标准氨基酸的限制。通过操纵遗传密码,可以加入非典型氨基酸(ncAAs),从而增强或改变蛋白质的功能。本综述探讨了将 ncAAs 引入生物合成蛋白质的三种主要策略的进展,重点关注高通量筛选在这些进展中的作用。第一部分讨论了氨基酰-tRNA 合成酶(amaRSs)和 tRNAs 的工程化,强调了新型选择方法如何提高 ncAA 结合效率和选择性等特性。第二部分探讨了改进蛋白质翻译机制的高通量技术,以适应替代遗传密码。这包括通过设计与翻译无关的细胞元件来提高 ncAA 结合率的机会。最后一部分重点介绍了用于高通量筛选含 ncAA 蛋白质的各种发现平台,展示了创新的结合配体和酶,这些配体和酶只用典型的氨基酸就很难创造出来。这些进展带来了前景广阔的药物线索和生物催化剂。总之,通过高通量方法发现意想不到的功能的能力极大地影响了 ncAA 的加入及其应用。未来实验技术的创新以及计算蛋白质设计和机器学习的进步将进一步提升这一领域的水平。
{"title":"Reaching New Heights in Genetic Code Manipulation with High Throughput Screening","authors":"Briana R. Lino, Sean J. Williams, Michelle E. Castor, James A. Van Deventer","doi":"10.1021/acs.chemrev.4c00329","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00329","url":null,"abstract":"The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":62.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable and Implantable Soft Robots 可穿戴和植入式软机器人
IF 62.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1021/acs.chemrev.4c00513
Shukun Yin, Dickson R. Yao, Yu Song, Wenzheng Heng, Xiaotian Ma, Hong Han, Wei Gao
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
软体机器人技术为不同规模的应用提供了创新解决方案。软体机器人的灵活性和机械特性使其在可穿戴和植入式应用中特别具有吸引力。软体机器人所需的规模和侵入程度取决于与人类互动的程度。本综述全面概述了可穿戴和植入式软机器人,包括在康复、辅助、器官模拟、手术工具和治疗方面的应用。我们讨论了各种挑战,如制造工艺的复杂性、响应材料的集成以及对稳健控制策略的需求,同时重点介绍了材料、致动和传感机制以及制造技术方面的进展。最后,我们讨论了未来展望,强调了主要挑战并提出了潜在的解决方案。
{"title":"Wearable and Implantable Soft Robots","authors":"Shukun Yin, Dickson R. Yao, Yu Song, Wenzheng Heng, Xiaotian Ma, Hong Han, Wei Gao","doi":"10.1021/acs.chemrev.4c00513","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00513","url":null,"abstract":"Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":62.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes. 测量大气颗粒和相关混合物的表面张力,以便更好地了解关键的大气过程。
IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 Epub Date: 2024-08-23 DOI: 10.1021/acs.chemrev.4c00173
Manuella El Haber, Violaine Gérard, Judith Kleinheins, Corinne Ferronato, Barbara Nozière

Aerosol and aqueous particles are ubiquitous in Earth's atmosphere and play key roles in geochemical processes such as natural chemical cycles, cloud and fog formation, air pollution, visibility, climate forcing, etc. The surface tension of atmospheric particles can affect their size distribution, condensational growth, evaporation, and exchange of chemicals with the atmosphere, which, in turn, are important in the above-mentioned geochemical processes. However, because measuring this quantity is challenging, its role in atmospheric processes was dismissed for decades. Over the last 15 years, this field of research has seen some tremendous developments and is rapidly evolving. This review presents the state-of-the-art of this subject focusing on the experimental approaches. It also presents a unique inventory of experimental adsorption isotherms for over 130 mixtures of organic compounds in water of relevance for model development and validation. Potential future areas of research seeking to better determine the surface tension of atmospheric particles, better constrain laboratory investigations, or better understand the role of surface tension in various atmospheric processes, are discussed. We hope that this review appeals not only to atmospheric scientists but also to researchers from other fields, who could help identify new approaches and solutions to the current challenges.

气溶胶和水颗粒在地球大气中无处不在,在地球化学过程中发挥着关键作用,如自然化学循环、云雾形成、空气污染、能见度、气候强迫等。大气颗粒物的表面张力会影响它们的大小分布、凝结生长、蒸发以及与大气的化学物质交换,进而在上述地球化学过程中发挥重要作用。然而,由于测量这一数量具有挑战性,几十年来它在大气过程中的作用一直被忽视。在过去的 15 年中,这一研究领域取得了巨大的发展,并在迅速演变。本综述介绍了这一课题的最新进展,重点是实验方法。它还介绍了 130 多种有机化合物混合物在水中的实验吸附等温线,对模型开发和验证具有重要意义。还讨论了未来可能的研究领域,以更好地确定大气颗粒的表面张力,更好地限制实验室研究,或更好地理解表面张力在各种大气过程中的作用。我们希望这篇综述不仅能吸引大气科学家,也能吸引其他领域的研究人员,帮助他们找到应对当前挑战的新方法和解决方案。
{"title":"Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes.","authors":"Manuella El Haber, Violaine Gérard, Judith Kleinheins, Corinne Ferronato, Barbara Nozière","doi":"10.1021/acs.chemrev.4c00173","DOIUrl":"10.1021/acs.chemrev.4c00173","url":null,"abstract":"<p><p>Aerosol and aqueous particles are ubiquitous in Earth's atmosphere and play key roles in geochemical processes such as natural chemical cycles, cloud and fog formation, air pollution, visibility, climate forcing, etc. The surface tension of atmospheric particles can affect their size distribution, condensational growth, evaporation, and exchange of chemicals with the atmosphere, which, in turn, are important in the above-mentioned geochemical processes. However, because measuring this quantity is challenging, its role in atmospheric processes was dismissed for decades. Over the last 15 years, this field of research has seen some tremendous developments and is rapidly evolving. This review presents the state-of-the-art of this subject focusing on the experimental approaches. It also presents a unique inventory of experimental adsorption isotherms for over 130 mixtures of organic compounds in water of relevance for model development and validation. Potential future areas of research seeking to better determine the surface tension of atmospheric particles, better constrain laboratory investigations, or better understand the role of surface tension in various atmospheric processes, are discussed. We hope that this review appeals not only to atmospheric scientists but also to researchers from other fields, who could help identify new approaches and solutions to the current challenges.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy 纠正循环塑料经济中的可回收和(生物)降解聚酯
IF 62.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1021/acs.chemrev.4c00712
Changxia Shi, Ethan C. Quinn, Wilfred T. Diment, Eugene Y.-X. Chen
The unit for elastic modulus (E) in Scheme 36 was incorrectly labeled as GPa, which should be in MPa. The corrected Scheme is given below. This article has not yet been cited by other publications.
方案 36 中弹性模量 (E) 的单位被错误地标注为 GPa,而应该是 MPa。更正后的方案如下。本文尚未被其他出版物引用。
{"title":"Correction to Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy","authors":"Changxia Shi, Ethan C. Quinn, Wilfred T. Diment, Eugene Y.-X. Chen","doi":"10.1021/acs.chemrev.4c00712","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00712","url":null,"abstract":"The unit for elastic modulus (<i>E</i>) in Scheme 36 was incorrectly labeled as GPa, which should be in MPa. The corrected Scheme is given below.<img alt=\"\" src=\"/cms/10.1021/acs.chemrev.4c00712/asset/images/medium/cr4c00712_0001.gif\"/> This article has not yet been cited by other publications.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":62.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides 导言:二维层状过渡金属二卤化物
IF 62.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1021/acs.chemrev.4c00586
Xiangfeng Duan, Hua Zhang
Published as part of <i>Chemical Reviews</i> special issue “Two-Dimensional Layered Transition Metal Dichalcogenides”. Two-dimensional (2D) materials have attracted tremendous attention in recent years, with transition metal dichalcogenides (TMDs) representing a particularly intriguing class. (1−3) TMDs consist of a transition metal atom (such as Mo, W, or Ti) sandwiched between two chalcogen atoms (S, Se, or Te), forming an MX<sub>2</sub> stoichiometry. Characterized by their unique layered structures, the weak van der Waals forces between the covalently bonded atomic crystalline layers allow them to be exfoliated into single- or few-layer sheets, displaying properties that are markedly different from those of their bulk counterparts. For example, the reduced dimensionality leads to a direct bandgap in many TMDs, unlike the indirect bandgap in their bulk form, making them suitable for optoelectronic applications such as photodetectors, light-emitting diodes, and solar cells. (3−9) The unique properties and potential applications of TMDs are driving significant advancements in various fields, from electronics to energy storage and beyond. (10−16) This virtual thematic issue is dedicated to exploring the latest developments and future directions in the research and application of 2D-TMDs. The scalable preparation of the atomically thin 2D-TMDs in large quantity or large area is foundational for capturing their potential in diverse technologies. Considerable efforts have been devoted to the preparation of various forms of 2D-TMDs, including mechanical exfoliation, chemical vapor deposition (CVD), and liquid-phase exfoliation. (17−24) Mechanical exfoliation, though versatile for producing diverse flakes, is limited in scalability and reproducibility. CVD offers better control over thickness and size, making it suitable for large-area production of high quality monolayers or thin films. Liquid-phase exfoliation is advantageous for producing solution-processable TMD inks, essential for printable electronics or energy applications that require bulk quantity of monolayer or few-layer TMDs. Additionally, TMDs often exist in different phases, such as 1T, 1T′, 2H, and 3R, each with distinct chemical or electronic properties. For instance, the 2H phase MoS<sub>2</sub> is semiconducting, while the 1T and 1T′ phases are metallic and semimetallic, respectively. Thus, phase engineering of nanomaterials (PEN) plays a critical role in tailoring the properties of TMDs. Control over these phases can be achieved through techniques like doping, strain engineering, and chemical treatments, enabling the customization of TMD properties for specific applications. (25) Furthermore, the nonbonding van der Waals interactions between the covalently bonded TMD atomic layers allow for the flexible intercalation of foreign atoms or molecules, forming self-assembled interlayers between the crystalline atomic layers without disrupting the in-plane covalent bonds. This capability
作为《化学评论》特刊 "二维层状过渡金属二掺杂物 "的一部分发表。近年来,二维(2D)材料引起了人们的极大关注,其中过渡金属二掺杂物(TMDs)尤其引人入胜。(1-3) TMDs 由一个过渡金属原子(如 Mo、W 或 Ti)夹在两个查尔根原子(S、Se 或 Te)之间,形成 MX2 化学计量。它们具有独特的层状结构,共价键原子结晶层之间微弱的范德华力使它们可以剥离成单层或少层薄片,显示出与块状晶体明显不同的特性。例如,由于尺寸减小,许多 TMD 具有直接带隙,这与它们的块体形式的间接带隙不同,使它们适合光电应用,如光电探测器、发光二极管和太阳能电池。(3-9) TMD 的独特性质和潜在应用正在推动从电子学到能源存储等各个领域的重大进展。(10-16)本期虚拟专题致力于探讨二维 TMDs 研究与应用的最新进展和未来方向。大量或大面积、可扩展地制备原子级薄的二维-TMDs 是挖掘其在各种技术中的潜力的基础。人们在制备各种形式的二维-TMDs 方面付出了巨大努力,包括机械剥离、化学气相沉积(CVD)和液相剥离。(17-24)机械剥离法虽然在制备各种薄片方面用途广泛,但在可扩展性和可重复性方面受到限制。CVD 能更好地控制厚度和尺寸,适合大面积生产高质量的单层或薄膜。液相剥离法在生产可溶液加工的 TMD 油墨方面具有优势,这对于需要大量单层或少层 TMD 的可印刷电子或能源应用至关重要。此外,TMD 通常以不同的相存在,如 1T、1T′、2H 和 3R,每种相都具有不同的化学或电子特性。例如,2H 相 MoS2 是半导体,而 1T 和 1T′ 相分别是金属和半金属。因此,纳米材料(PEN)的相工程在定制 TMD 特性方面起着至关重要的作用。通过掺杂、应变工程和化学处理等技术可以实现对这些相的控制,从而为特定应用定制 TMD 性能。(25)此外,共价键 TMD 原子层之间的非键范德华相互作用允许外来原子或分子的灵活插层,在晶体原子层之间形成自组装夹层,而不会破坏面内共价键。这种能力为定制和调整 TMD 的物理性质开辟了另一个方向。(11、26-29)由于化学成分、层数和结构对称性的多变性,TMD 材料表现出高度可调的电子、光学和机械特性,使其在电子学、能量存储等各种应用领域具有高度的通用性。TMD 在亚纳米厚度极限下的直接带隙和高载流子迁移率使其成为下一代电子和光电设备的理想材料。目前,人们正在积极探索将它们用于晶体管、柔性显示器和光电探测器。例如,与传统的硅基器件相比,基于 TMD 的晶体管有望降低功耗并提高开关速度。(3,30,31)原子薄的几何形状和高度表面敏感的电子特性使二维 TMD 成为化学和生物传感器的一个极具吸引力的材料平台。它们能以高选择性和高灵敏度检测低浓度气体或生物分子,为环境监测和医疗诊断提供了新的可能性。(32-35) 二维-TMDs 的大表面积和可调电子特性使其成为多种反应(包括绿色制氢)的高度可调催化剂。此外,TMDs 在锂离子电池和超级电容器等储能设备中也显示出潜力。它们的高表面积和层状结构可促进离子的高效传输和存储。例如,与传统材料相比,基于 TMD 的锂离子电池阳极可提供更高的容量和更长的循环寿命。(36-38) 虽然很难涵盖这一快速发展领域的所有相关主题,但这一虚拟主题期刊汇集了该领域不同背景的领军人物,共同探讨二维 TMD 的最新发展、趋势和未来方向。从一开始,刘开慧等人就对二维-TMDs 进行了深入探讨。 (21) Xidong Duan 等人针对可规模化生产大面积 TMD 薄膜的关键需求,全面概述了 TMD 的外延生长,包括晶圆级生产和单晶外延生长。(21) Xidong Duan 等系统地总结了制备 TMD 异质结构的最新技术,讨论了每种策略的原理、机理和优势,重点介绍了 2D-TMD 异质结构在各个技术领域的代表性应用,并讨论了 TMD 异质结构合成和器件制备的挑战和未来展望。(39) 林朝阳和段祥峰等人综述了溶液可处理二维-TMD 油墨的发展,讨论了这些油墨的化学合成及其沉积技术,并强调了它们在电子和光电领域各种应用的可扩展和低成本生产薄膜方面的潜力。(20) 综述最后分析了推进二维-TMD 油墨技术的关键挑战和未来研究方向。张华等人探讨了晶相在决定 TMD 材料性能方面的关键作用,全面概述了 TMD 的合成 PEN 策略,强调了控制常规相和蜕变相在电子和催化等各个领域应用的重要性,并对该领域未来的挑战和机遇提出了展望。(25) Yuan Liu 等人研究了由于二维-TMDs 的超薄结构而使其形成高质量金属接触所面临的挑战,并强调范德华(vdW)接触是传统金属化方法的低能替代方法。他们讨论了范德华接触器件的最新进展、其独特的传输特性以及实现前所未有的器件性能的前景,全面分析了这一快速发展领域的当前研究状况和未来前景。(40) 何永敏和刘铮概述了基于微电池的 TMD 电催化剂研究,总结了在单假(器件)层面了解 TMD 催化剂的进展,讨论了这一创新研究领域的挑战和未来方向,并强调了催化位点暴露的空间限制优势。(41) 最后,Pulickel Ajayan 等人回顾了二维-TMDs 在能量转换和储存中的应用,(42) 强调了 TMDs 在相位、尺寸、组成和缺陷工程方面的重大进展,旨在优化其在电催化水分离和碱离子电池等应用中的性能。他们还就当前的研究和未来的方向提供了重要的见解,以便为能源解决方案设计 TMDs。尽管迄今为止取得了重大进展,但可靠地大规模合成高质量、无缺陷的 TMDs 仍然是一个重大障碍。实现对 TMD 相位和组成的精确、可重复控制是另一个需要解决的挑战。(43)此外,将 TMDs 集成到现有技术和系统中还需要进一步研究,以了解其长期稳定性和性能。二维 TMD 的未来研究可能会集中在改进合成技术、探索新的相位和异质结构以及开发新型应用上。表征工具和计算方法的不断进步也将在了解和优化 TMD 性能方面发挥至关重要的作用。总之,二维 TMD 是一个充满活力、发展迅速的研究领域。它们的独特性质和多用途应用有可能推动各个技术领域的重大进展,为解决当代科学和工程挑战的创新方案铺平道路。这期虚拟主题期刊强调了二维-TMDs 的变革潜力,旨在激发这一充满活力的领域的进一步研究和创新。段翔峰于 1997 年获得中国科学技术大学学士学位,2002 年获得哈佛大学博士学位。从 2002 年到 2008 年,他是 Nanosys 公司的创始科学家。段博士于 2008 年加入加州大学洛杉矶分校,担任 Howard Reiss 职业发展讲座教授。他于 2012 年晋升为副教授,并于 2013 年晋升为正教授。他的研究重点是纳米级材料和器件,应用于下一代电子、能源解决方案和健康技术。张华是香港城市大学纳米材料讲座教授。他于 1998 年在北京大学获得博士学位。作为博士后研究员,他于 1999 年加入鲁汶工程大学(Katholieke Universiteit Leuven),并于 2001 年转入美国西北大学(Northwestern University)。之后在 NanoInk Inc. (他于2006年加入南洋理工大学,并于2019年转入香港城市大学。他目前的研究
{"title":"Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides","authors":"Xiangfeng Duan, Hua Zhang","doi":"10.1021/acs.chemrev.4c00586","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00586","url":null,"abstract":"Published as part of &lt;i&gt;Chemical Reviews&lt;/i&gt; special issue “Two-Dimensional Layered Transition Metal Dichalcogenides”. Two-dimensional (2D) materials have attracted tremendous attention in recent years, with transition metal dichalcogenides (TMDs) representing a particularly intriguing class. (1−3) TMDs consist of a transition metal atom (such as Mo, W, or Ti) sandwiched between two chalcogen atoms (S, Se, or Te), forming an MX&lt;sub&gt;2&lt;/sub&gt; stoichiometry. Characterized by their unique layered structures, the weak van der Waals forces between the covalently bonded atomic crystalline layers allow them to be exfoliated into single- or few-layer sheets, displaying properties that are markedly different from those of their bulk counterparts. For example, the reduced dimensionality leads to a direct bandgap in many TMDs, unlike the indirect bandgap in their bulk form, making them suitable for optoelectronic applications such as photodetectors, light-emitting diodes, and solar cells. (3−9) The unique properties and potential applications of TMDs are driving significant advancements in various fields, from electronics to energy storage and beyond. (10−16) This virtual thematic issue is dedicated to exploring the latest developments and future directions in the research and application of 2D-TMDs. The scalable preparation of the atomically thin 2D-TMDs in large quantity or large area is foundational for capturing their potential in diverse technologies. Considerable efforts have been devoted to the preparation of various forms of 2D-TMDs, including mechanical exfoliation, chemical vapor deposition (CVD), and liquid-phase exfoliation. (17−24) Mechanical exfoliation, though versatile for producing diverse flakes, is limited in scalability and reproducibility. CVD offers better control over thickness and size, making it suitable for large-area production of high quality monolayers or thin films. Liquid-phase exfoliation is advantageous for producing solution-processable TMD inks, essential for printable electronics or energy applications that require bulk quantity of monolayer or few-layer TMDs. Additionally, TMDs often exist in different phases, such as 1T, 1T′, 2H, and 3R, each with distinct chemical or electronic properties. For instance, the 2H phase MoS&lt;sub&gt;2&lt;/sub&gt; is semiconducting, while the 1T and 1T′ phases are metallic and semimetallic, respectively. Thus, phase engineering of nanomaterials (PEN) plays a critical role in tailoring the properties of TMDs. Control over these phases can be achieved through techniques like doping, strain engineering, and chemical treatments, enabling the customization of TMD properties for specific applications. (25) Furthermore, the nonbonding van der Waals interactions between the covalently bonded TMD atomic layers allow for the flexible intercalation of foreign atoms or molecules, forming self-assembled interlayers between the crystalline atomic layers without disrupting the in-plane covalent bonds. This capability ","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":62.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Anisotropy into Organized Nanoscale Matter. 将各向异性转化为有组织的纳米级物质。
IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 Epub Date: 2024-09-24 DOI: 10.1021/acs.chemrev.4c00299
Wenjie Zhou, Yuanwei Li, Benjamin E Partridge, Chad A Mirkin

Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.

将离散构件编排成周期性和准周期性阵列是一项具有挑战性的工作。组织材料的方法在纳米尺度上尤为重要,因为组织过程所需的时间在实验中实际上是可控的,而且由此产生的结构在催化、光学和等离子体等应用领域也很有意义。虽然各向同性纳米级物体的组装已被广泛研究并用经验设计规则进行了描述,但最近的合成技术进步使得各向异性可被编程到由纳米级构件组成的宏观组装中,从而为设计周期性材料甚至具有非自然特性的准晶体提供了新的机会。在本综述中,我们确定了利用单个构件的各向异性来指导纳米级物质组织的准则。首先,我们考虑了局部相互作用的性质和空间分布,并推导出指导粒子组织的三条设计规则。随后,根据这些设计规则对文献中的最新实例进行了研究。在对每条规则的讨论中,我们根据构建模块的维度(0D-3D)对示例进行了划分。最后,我们从几何角度出发,提出了一种基于逆向设计的通用构造策略,这种策略将使胶体晶体的工程设计具有前所未有的结构控制能力。
{"title":"Engineering Anisotropy into Organized Nanoscale Matter.","authors":"Wenjie Zhou, Yuanwei Li, Benjamin E Partridge, Chad A Mirkin","doi":"10.1021/acs.chemrev.4c00299","DOIUrl":"10.1021/acs.chemrev.4c00299","url":null,"abstract":"<p><p>Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides 导言:二维层状过渡金属二卤化物
IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1021/acs.chemrev.4c0058610.1021/acs.chemrev.4c00586
Xiangfeng Duan*,  and , Hua Zhang*, 
{"title":"Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides","authors":"Xiangfeng Duan*,&nbsp; and ,&nbsp;Hua Zhang*,&nbsp;","doi":"10.1021/acs.chemrev.4c0058610.1021/acs.chemrev.4c00586","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00586https://doi.org/10.1021/acs.chemrev.4c00586","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142403124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. 用于遗传密码扩展和重编程的吡咯烷酮系统工程。
IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-09 Epub Date: 2024-09-05 DOI: 10.1021/acs.chemrev.4c00243
Daniel L Dunkelmann, Jason W Chin

Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.

在过去的 16 年中,利用吡咯赖氨酸-tRNA 合成酶(PylRS)/tRNAPyl 对的独特特性,生物体内的遗传密码扩增和重编程发生了巨大变化。在这里,我们总结了吡咯赖氨酸系统的发现,并描述了 PylRS/tRNAPyl 对的独特性质,这些性质为它们在遗传密码扩增和重编程中发挥变革性作用奠定了基础。我们介绍了利用 PylRS/tRNAPyl 对进行遗传密码扩增的发展,从大肠杆菌到所有生命领域,以及利用 pyl 系统进行生物合成和整合 ncAAs 的系统的发展。我们回顾了 PylRS/tRNAPyl 对在整合新的非典型氨基酸 (ncAAs) 方面的独特应用,以及对 PylRS/tRNAPyl 对进行工程化以将α-L-氨基酸以外的非典型单体添加到生物体的遗传密码中的策略。我们回顾了在发现和可扩展地生成相互正交的 PylRS/tRNAPyl 对方面取得的快速进展,这些 PylRS/tRNAPyl 对可以根据不同的密码子定向加入不同的 ncAA,我们还回顾了使用相互正交的 PylRS/tRNAPyl 对将多种不同的 ncAA 加入蛋白质的策略。最后,我们回顾了非规范聚合物和大环的编码细胞合成的最新进展,并讨论了 PylRS/tRNAPyl 对的未来发展。
{"title":"Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.","authors":"Daniel L Dunkelmann, Jason W Chin","doi":"10.1021/acs.chemrev.4c00243","DOIUrl":"10.1021/acs.chemrev.4c00243","url":null,"abstract":"<p><p>Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNA<sup>Pyl</sup> pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNA<sup>Pyl</sup> pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from <i>E. coli</i> to all domains of life, using PylRS/tRNA<sup>Pyl</sup> pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNA<sup>Pyl</sup> pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNA<sup>Pyl</sup> pairs to add noncanonical monomers, beyond α-<i>L</i>-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNA<sup>Pyl</sup> pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNA<sup>Pyl</sup> pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNA<sup>Pyl</sup> pairs.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1