Olha Antoniuk, Ana Maranha, Jorge A R Salvador, Nuno Empadinhas, Vânia M Moreira
Covering: 2013 to 2023In an era where antimicrobial resistance severely threatens our ability to treat infections, the discovery of new drugs that belong to different chemical classes and/or bear original modes of action is urgently needed. In this case, diterpenoids comprise a productive field with a proven track record in providing new anti-infectives to tackle bacterial infections and malaria. This review highlights the potential of both naturally occurring and semi-synthetic bi- and tricyclic diterpenoids to become leads in search of new drugs to treat infections caused by bacteria, fungi, viruses and protozoan parasites. The literature from the last decade (2013-2023) is covered, focusing on naturally occurring and semi-synthetic bicyclic (labdanes and labdane-type) and tricyclic (all classes) diterpenoids, detailing their relevant biological activities in the context of infection, which are explained through structure-activity relationships.
{"title":"Bi- and tricyclic diterpenoids: landmarks from a decade (2013-2023) in search of leads against infectious diseases.","authors":"Olha Antoniuk, Ana Maranha, Jorge A R Salvador, Nuno Empadinhas, Vânia M Moreira","doi":"10.1039/d4np00021h","DOIUrl":"https://doi.org/10.1039/d4np00021h","url":null,"abstract":"<p><p>Covering: 2013 to 2023In an era where antimicrobial resistance severely threatens our ability to treat infections, the discovery of new drugs that belong to different chemical classes and/or bear original modes of action is urgently needed. In this case, diterpenoids comprise a productive field with a proven track record in providing new anti-infectives to tackle bacterial infections and malaria. This review highlights the potential of both naturally occurring and semi-synthetic bi- and tricyclic diterpenoids to become leads in search of new drugs to treat infections caused by bacteria, fungi, viruses and protozoan parasites. The literature from the last decade (2013-2023) is covered, focusing on naturally occurring and semi-synthetic bicyclic (labdanes and labdane-type) and tricyclic (all classes) diterpenoids, detailing their relevant biological activities in the context of infection, which are explained through structure-activity relationships.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as asperochone A from Aspergillus sp. MMC-2.
{"title":"Hot off the Press.","authors":"Robert A Hill, Andrew Sutherland","doi":"10.1039/d4np90043j","DOIUrl":"10.1039/d4np90043j","url":null,"abstract":"<p><p>A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as asperochone A from <i>Aspergillus</i> sp. MMC-2.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Covering: up to June 2024Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites derived from L-tyrosine, exhibiting significant pharmacological properties such as anti-microbial, anti-spasmodic, anti-cancer, cardiovascular protection, and analgesic effects. The industrial production of valuable BIAs relies on extraction from plants; however, challenges concerning their low concentration and efficiency hinder drug development. Hence, alternative approaches, including biosynthesis and chemoenzymatic synthesis, have been explored. Model species like Papaver somniferum and Coptis japonica have played a key role in unraveling the biosynthetic pathways of BIAs; however, many aspects, particularly modified steps like oxidation and methylation, remain unclear. Critical enzymes, e.g., CYP450s and methyltransferases, play a substantial role in BIA backbone formation and modification, which is essential for understanding the origin and adaptive evolution of these plant specialized metabolites. This review comprehensively analyzes the structural diversity of reported BIAs and their distribution in plant lineages. In addition, the progress in understanding biosynthesis, evolution, and catalytic mechanisms underlying BIA biosynthesis is summarized. Finally, we discuss the progress and challenges in metabolic engineering, providing valuable insights into BIA drug development and the sustainable utilization of BIA-producing plants.
{"title":"Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids.","authors":"Ya Tian, Lingzhe Kong, Qi Li, Yifan Wang, Yongmiao Wang, Zhoujie An, Yuwei Ma, Lixia Tian, Baozhong Duan, Wei Sun, Ranran Gao, Shilin Chen, Zhichao Xu","doi":"10.1039/d4np00029c","DOIUrl":"https://doi.org/10.1039/d4np00029c","url":null,"abstract":"<p><p>Covering: up to June 2024Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites derived from L-tyrosine, exhibiting significant pharmacological properties such as anti-microbial, anti-spasmodic, anti-cancer, cardiovascular protection, and analgesic effects. The industrial production of valuable BIAs relies on extraction from plants; however, challenges concerning their low concentration and efficiency hinder drug development. Hence, alternative approaches, including biosynthesis and chemoenzymatic synthesis, have been explored. Model species like <i>Papaver somniferum</i> and <i>Coptis japonica</i> have played a key role in unraveling the biosynthetic pathways of BIAs; however, many aspects, particularly modified steps like oxidation and methylation, remain unclear. Critical enzymes, <i>e.g.</i>, CYP450s and methyltransferases, play a substantial role in BIA backbone formation and modification, which is essential for understanding the origin and adaptive evolution of these plant specialized metabolites. This review comprehensively analyzes the structural diversity of reported BIAs and their distribution in plant lineages. In addition, the progress in understanding biosynthesis, evolution, and catalytic mechanisms underlying BIA biosynthesis is summarized. Finally, we discuss the progress and challenges in metabolic engineering, providing valuable insights into BIA drug development and the sustainable utilization of BIA-producing plants.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Covering: 2019 to 2023Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide. To follow up on our prior review (covering 2014-2018) and present the progress of this class of compounds, this review summarizes and provides updated literature on novel isoquinoline alkaloids isolated during the period of 2019-2023, together with their biological activity and underlying mechanisms of action. Moreover, with the rapid development of synthetic modification strategies, the synthesis strategies of isoquinoline alkaloids have been continuously optimized, and the total synthesis of these classes of natural products is reviewed critically herein. Over 250 molecules with a broad range of bioactivities, including antitumor, antibacterial, cardioprotective, anti-inflammatory, neuroprotective and other activities, are isolated and discussed. The total synthesis of more than nine classes of isoquinoline alkaloids is presented, and thirteen compounds constitute the first total synthesis. This survey provides new indications or possibilities for the discovery of new drugs from the original naturally occurring isoquinoline alkaloids.
{"title":"Isolation, biological activity, and synthesis of isoquinoline alkaloids.","authors":"Xiaorong Yang, Xiaolou Miao, Lixia Dai, Xiao Guo, Janar Jenis, Jiyu Zhang, Xiaofei Shang","doi":"10.1039/d4np00023d","DOIUrl":"https://doi.org/10.1039/d4np00023d","url":null,"abstract":"<p><p>Covering: 2019 to 2023Isoquinoline alkaloids, an important class of <i>N</i>-based heterocyclic compounds, have attracted considerable attention from researchers worldwide. To follow up on our prior review (covering 2014-2018) and present the progress of this class of compounds, this review summarizes and provides updated literature on novel isoquinoline alkaloids isolated during the period of 2019-2023, together with their biological activity and underlying mechanisms of action. Moreover, with the rapid development of synthetic modification strategies, the synthesis strategies of isoquinoline alkaloids have been continuously optimized, and the total synthesis of these classes of natural products is reviewed critically herein. Over 250 molecules with a broad range of bioactivities, including antitumor, antibacterial, cardioprotective, anti-inflammatory, neuroprotective and other activities, are isolated and discussed. The total synthesis of more than nine classes of isoquinoline alkaloids is presented, and thirteen compounds constitute the first total synthesis. This survey provides new indications or possibilities for the discovery of new drugs from the original naturally occurring isoquinoline alkaloids.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
{"title":"Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products.","authors":"Yuyang Wang, Yan-Ni Shi, Hao Xiang, Yi-Ming Shi","doi":"10.1039/d4np00018h","DOIUrl":"https://doi.org/10.1039/d4np00018h","url":null,"abstract":"<p><p>Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical case studies from natural products of recent interest in the crop protection industry","authors":"Georg Späth, Olivier Loiseleur","doi":"10.1039/d4np00035h","DOIUrl":"https://doi.org/10.1039/d4np00035h","url":null,"abstract":"Covering: up to 2024","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.
{"title":"Phytochemical and pharmacological properties of the genus Alpinia from 2016 to 2023","authors":"","doi":"10.1039/d4np00004h","DOIUrl":"10.1039/d4np00004h","url":null,"abstract":"<div><div>Covering 2016 up to the end of 2023</div></div><div><div> <em>Alpinia</em> is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many <em>Alpinia</em> are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on <em>Alpinia</em> species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that <em>Alpinia</em> species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.</div></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/np/d4np00004h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloranthaceae is comprised of four extant genera (Chloranthus, Sarcandra, Hedyosmum, and Ascarina), totaling about 80 species, many of which have been widely used as herbal medicines for diverse medical purposes. Chloranthaceae plants represent a rich source of structurally interesting and diverse secondary metabolites, with sesquiterpenoids and diterpenoids being the predominant structural types. Lindenane sesquiterpenoids and their oligomers, chemotaxonomical markers of the family Chloranthaceae, have shown a wide spectrum of bioactivities, attracting significant attention from organic chemists and pharmacologists. Recent achievements also demonstrated the research value of two unique structural types in this plant family, sesquiterpenoid–monoterpenoid heterodimers and meroterpenoids. This review systematically summarizes 682 structurally characterized terpenoids from 22 Chloranthaceae plants and their key biological activities as well as the chemical synthesis of selected terpenoids.
{"title":"Terpenoids of plants from Chloranthaceae family: chemistry, bioactivity, and synthesis†","authors":"","doi":"10.1039/d4np00005f","DOIUrl":"10.1039/d4np00005f","url":null,"abstract":"<div><div>Covering: 1976 to December 2023</div></div><div><div>Chloranthaceae is comprised of four extant genera (<em>Chloranthus</em>, <em>Sarcandra</em>, <em>Hedyosmum</em>, and <em>Ascarina</em>), totaling about 80 species, many of which have been widely used as herbal medicines for diverse medical purposes. Chloranthaceae plants represent a rich source of structurally interesting and diverse secondary metabolites, with sesquiterpenoids and diterpenoids being the predominant structural types. Lindenane sesquiterpenoids and their oligomers, chemotaxonomical markers of the family Chloranthaceae, have shown a wide spectrum of bioactivities, attracting significant attention from organic chemists and pharmacologists. Recent achievements also demonstrated the research value of two unique structural types in this plant family, sesquiterpenoid–monoterpenoid heterodimers and meroterpenoids. This review systematically summarizes 682 structurally characterized terpenoids from 22 Chloranthaceae plants and their key biological activities as well as the chemical synthesis of selected terpenoids.</div></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.
{"title":"Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing","authors":"","doi":"10.1039/d4np00010b","DOIUrl":"10.1039/d4np00010b","url":null,"abstract":"<div><div>Covering: up to the end of 2023</div></div><div><div>Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly <em>Streptomyces</em> spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.</div></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manon Meunier, Andreas Schinkovitz, Séverine Derbré
Covering: up to 2024
覆盖范围:至 2024 年
{"title":"Current and emerging tools and strategies for the identification of bioactive natural products in complex mixtures","authors":"Manon Meunier, Andreas Schinkovitz, Séverine Derbré","doi":"10.1039/d4np00006d","DOIUrl":"https://doi.org/10.1039/d4np00006d","url":null,"abstract":"Covering: up to 2024","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":11.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}