首页 > 最新文献

Photochemical & Photobiological Sciences最新文献

英文 中文
21st century surface UV radiation changes deduced from CMIP6 models: part I-evolution of major influencing factors.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-05 DOI: 10.1007/s43630-024-00675-7
A Chatzopoulou, K Tourpali, A F Bais, P Braesicke
<p><p>For a given solar elevation, the levels of solar ultraviolet radiation at the Earth's surface are determined by the amounts of ozone, aerosols, and clouds, as well as by the reflectivity of the surface. Here, we study the evolution of these factors for three selected decades in the period 1950-2100 using results from simulations with Earth-System models (ESMs) participating in the 6<sup>th</sup> phase of the Coupled Model Intercomparison Project (CMIP6). The simulations for the future are based on three Shared Socioeconomic Pathways: SSP1-2.6, SSP3-7.0, and SSP5-8.5. The models were grouped according to whether they use prescribed ozone fields or interactive chemistry schemes for ozone, revealing significant differences in the absolute levels and variability of total ozone column between the two groups of models. From mid-twenty-first century onward, the ozone recovery is evident in both groups under SSP3-7.0 and SSP5-8.5, but not under SSP1-2.6. The changes in the aerosol optical depth show distinct geographical patterns that are related to their sources, either natural (i.e., dust, biomass burning) or anthropogenic (industrial activities). The aerosols are generally more abundant in 1990-2000 compared to 1950-1960, particularly over regions with industrial activity, with a reversal of this pattern in 2090-2100. Most of these patterns are present in all three pathways, but with different signs compared to 1990-2000 in some regions (i.e., Europe, North America). Over areas with strong natural sources, the aerosol optical depth (AOD) in 2090-2100 increases further under all pathways. The changes in surface reflectivity are important mainly at the end of the twenty-first century and occur predominantly at the high and polar latitudes of both hemispheres, with reductions relative to 1950-1960 of up to 45% due to sea ice retreat. The alterations in the attenuation of shortwave solar radiation by changing cloudiness (expressed in the form of the cloud modification factor, CMF) are more evident at high latitudes, with decreases in 2090-2100 over the Arctic ranging from -5% (SSP1-2.6) to -13% (SSP5-8.5) and smaller decreases of up to -5% in the vicinity of the Antarctic coast. The simulations of ozone, aerosols, surface reflectivity, and clouds for the recent past (2003-2012) were compared to the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis data, showing for total ozone better agreement to models with interactive ozone chemistry. The model-derived AOD shows significant differences from CAMS in various regions worldwide, with up to 0.2 higher values across the northern hemisphere. Finally, the comparisons for surface reflectivity and cloud effects οn this decadal scale reveal a general agreement between models and observations over most of the globe. Thus, we conclude that the projected changes have a good basis in the recent past, suggesting they are realistic estimates of how factors influencing solar ultraviolet radiation may diffe
{"title":"21<sup>st</sup> century surface UV radiation changes deduced from CMIP6 models: part I-evolution of major influencing factors.","authors":"A Chatzopoulou, K Tourpali, A F Bais, P Braesicke","doi":"10.1007/s43630-024-00675-7","DOIUrl":"https://doi.org/10.1007/s43630-024-00675-7","url":null,"abstract":"&lt;p&gt;&lt;p&gt;For a given solar elevation, the levels of solar ultraviolet radiation at the Earth's surface are determined by the amounts of ozone, aerosols, and clouds, as well as by the reflectivity of the surface. Here, we study the evolution of these factors for three selected decades in the period 1950-2100 using results from simulations with Earth-System models (ESMs) participating in the 6&lt;sup&gt;th&lt;/sup&gt; phase of the Coupled Model Intercomparison Project (CMIP6). The simulations for the future are based on three Shared Socioeconomic Pathways: SSP1-2.6, SSP3-7.0, and SSP5-8.5. The models were grouped according to whether they use prescribed ozone fields or interactive chemistry schemes for ozone, revealing significant differences in the absolute levels and variability of total ozone column between the two groups of models. From mid-twenty-first century onward, the ozone recovery is evident in both groups under SSP3-7.0 and SSP5-8.5, but not under SSP1-2.6. The changes in the aerosol optical depth show distinct geographical patterns that are related to their sources, either natural (i.e., dust, biomass burning) or anthropogenic (industrial activities). The aerosols are generally more abundant in 1990-2000 compared to 1950-1960, particularly over regions with industrial activity, with a reversal of this pattern in 2090-2100. Most of these patterns are present in all three pathways, but with different signs compared to 1990-2000 in some regions (i.e., Europe, North America). Over areas with strong natural sources, the aerosol optical depth (AOD) in 2090-2100 increases further under all pathways. The changes in surface reflectivity are important mainly at the end of the twenty-first century and occur predominantly at the high and polar latitudes of both hemispheres, with reductions relative to 1950-1960 of up to 45% due to sea ice retreat. The alterations in the attenuation of shortwave solar radiation by changing cloudiness (expressed in the form of the cloud modification factor, CMF) are more evident at high latitudes, with decreases in 2090-2100 over the Arctic ranging from -5% (SSP1-2.6) to -13% (SSP5-8.5) and smaller decreases of up to -5% in the vicinity of the Antarctic coast. The simulations of ozone, aerosols, surface reflectivity, and clouds for the recent past (2003-2012) were compared to the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis data, showing for total ozone better agreement to models with interactive ozone chemistry. The model-derived AOD shows significant differences from CAMS in various regions worldwide, with up to 0.2 higher values across the northern hemisphere. Finally, the comparisons for surface reflectivity and cloud effects οn this decadal scale reveal a general agreement between models and observations over most of the globe. Thus, we conclude that the projected changes have a good basis in the recent past, suggesting they are realistic estimates of how factors influencing solar ultraviolet radiation may diffe","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-30 DOI: 10.1007/s43630-024-00670-y
Niklas Diepold, Friederike Reese, Tina Prior, Christian Schnepel, Norbert Sewald, Tilman Kottke

Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH-) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH-. In vitro, FADH- can be regenerated by photoreduction of the oxidized FAD inside the protein using blue light, turning the halogenase into an inefficient artificial photoenzyme. We aimed to improve the photochemical properties of the tryptophan 5-halogenase PyrH from Streptomyces rugosporus by structure-guided mutagenesis. W279 and W281 of the conserved WxWxIP-motif close to FAD were exchanged against phenylalanine. Time-resolved UV-vis spectroscopy showed that the W281F exchange indeed increased the quantum yield of the one- and two-electron reduction, respectively. The cofactor binding affinity decreased slightly with dissociation constants rising from 31 to 74 μM, as examined by fluorescence anisotropy. FTIR difference spectroscopy demonstrated that the allosteric coupling between the FAD and substrate binding sites was mostly preserved. In contrast, the double mutant did not improve the yield further, while negatively affecting binding affinity and structural coupling. The distal W279F exchange was less effective in all parameters. Photoreductions were additionally delayed by a reversible inactive conformation. We conclude that there is a delicate balance to be considered for screening of FDHs for biocatalysis. Variant PyrH-W281F was found to be the most promising candidate for the application as artificial photoenzyme.

{"title":"Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes.","authors":"Niklas Diepold, Friederike Reese, Tina Prior, Christian Schnepel, Norbert Sewald, Tilman Kottke","doi":"10.1007/s43630-024-00670-y","DOIUrl":"https://doi.org/10.1007/s43630-024-00670-y","url":null,"abstract":"<p><p>Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH<sup>-</sup>) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH<sup>-</sup>. In vitro, FADH<sup>-</sup> can be regenerated by photoreduction of the oxidized FAD inside the protein using blue light, turning the halogenase into an inefficient artificial photoenzyme. We aimed to improve the photochemical properties of the tryptophan 5-halogenase PyrH from Streptomyces rugosporus by structure-guided mutagenesis. W279 and W281 of the conserved WxWxIP-motif close to FAD were exchanged against phenylalanine. Time-resolved UV-vis spectroscopy showed that the W281F exchange indeed increased the quantum yield of the one- and two-electron reduction, respectively. The cofactor binding affinity decreased slightly with dissociation constants rising from 31 to 74 μM, as examined by fluorescence anisotropy. FTIR difference spectroscopy demonstrated that the allosteric coupling between the FAD and substrate binding sites was mostly preserved. In contrast, the double mutant did not improve the yield further, while negatively affecting binding affinity and structural coupling. The distal W279F exchange was less effective in all parameters. Photoreductions were additionally delayed by a reversible inactive conformation. We conclude that there is a delicate balance to be considered for screening of FDHs for biocatalysis. Variant PyrH-W281F was found to be the most promising candidate for the application as artificial photoenzyme.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-28 DOI: 10.1007/s43630-024-00673-9
Kazutaka Hirakawa, Toji Matsuura, Yoshinobu Nishimura, Hakan Mori, Shinsuke Takagi

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.08 ns) was markedly smaller than those of organic solvents and the relative amplitude of the shorter lifetime was dominated in the aqueous solution. Thus, this shorter lifetime can be explained by the deactivation via intramolecular electron transfer. These two states of berberine were independent of pH. The enthalpy and entropy changes between these two states were - 23.2 kJ mol-1 and - 90 J K-1 mol-1, supporting the aggregation of berberine. In the aggregation state, an electrostatic interaction between cationic berberine and chloride ion decreases the electron accepting ability of the isoquinoline moiety of berberine, resulting in the suppression of intramolecular electron transfer. Furthermore, in the presence of clay, the interaction between berberine and clay increased the fluorescence intensity of berberine and its lifetime, showing that the negative charge of clay suppresses the intramolecular electron transfer. Since the electron transfer quenching of the photo-excited berberine is advantageous for suppressing the phototoxic effect of berberine, the inhibition of berberine aggregation is an important process for the phototoxicity prevention.

{"title":"Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.","authors":"Kazutaka Hirakawa, Toji Matsuura, Yoshinobu Nishimura, Hakan Mori, Shinsuke Takagi","doi":"10.1007/s43630-024-00673-9","DOIUrl":"https://doi.org/10.1007/s43630-024-00673-9","url":null,"abstract":"<p><p>The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.08 ns) was markedly smaller than those of organic solvents and the relative amplitude of the shorter lifetime was dominated in the aqueous solution. Thus, this shorter lifetime can be explained by the deactivation via intramolecular electron transfer. These two states of berberine were independent of pH. The enthalpy and entropy changes between these two states were - 23.2 kJ mol<sup>-1</sup> and - 90 J K<sup>-1</sup> mol<sup>-1</sup>, supporting the aggregation of berberine. In the aggregation state, an electrostatic interaction between cationic berberine and chloride ion decreases the electron accepting ability of the isoquinoline moiety of berberine, resulting in the suppression of intramolecular electron transfer. Furthermore, in the presence of clay, the interaction between berberine and clay increased the fluorescence intensity of berberine and its lifetime, showing that the negative charge of clay suppresses the intramolecular electron transfer. Since the electron transfer quenching of the photo-excited berberine is advantageous for suppressing the phototoxic effect of berberine, the inhibition of berberine aggregation is an important process for the phototoxicity prevention.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twenty-first century surface UV radiation changes deduced from CMIP6 models. Part II: effects on UV index and plant growth weighted irradiance.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-24 DOI: 10.1007/s43630-024-00676-6
Anthi Chatzopoulou, K Tourpali, A F Bais, P Braesicke

This paper investigates the evolution of changes in surface ultraviolet (UV) radiation globally, emphasizing the significant impacts of key factors influencing its variability, i.e., total column ozone, aerosols, clouds, and surface reflectivity. Simulations of UV radiation were performed by the UVSPEC radiative transfer model and span from the mid-twentieth century to the end of the twenty-first century. Input data were derived from eleven Earth System Models that participated in the 6th Phase of the Coupled Model Intercomparison Project (CMIP6). The UV Index (UVI) simulations for the late twentieth century indicate an increase in UVI levels relative to the 1950s in the Southern Hemisphere's mid and high latitudes, attributed to ozone depletion, and decreases in southeastern Asia due to increases in aerosols. Projections of changes in UVI for the last decade of the twenty-first century were derived for three Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP3-7.0, and SSP5-8.5. Under SSP1-2.6, the scenario with the lowest greenhouse gas (GHG) and aerosol emissions, UVI is projected to increase relative to the 1950s by up to 20% in Europe and North America and to decrease by as much as - 10% over tropical and polar regions. Under SSP3-7.0 and SSP5-8.5, scenarios with higher GHG and aerosol emissions, UVI changes are generally negative globally due to ozone recovery and increases in aerosol optical depth, while localized positive changes are found over Central and South America, Europe, Africa, and the Pacific and Indian Oceans. The changes in the biologically effective solar irradiance for plant growth exhibit similar geographical patterns to UVI with slight differences, due to weaker sensitivity to changes in ozone.

{"title":"Twenty-first century surface UV radiation changes deduced from CMIP6 models. Part II: effects on UV index and plant growth weighted irradiance.","authors":"Anthi Chatzopoulou, K Tourpali, A F Bais, P Braesicke","doi":"10.1007/s43630-024-00676-6","DOIUrl":"https://doi.org/10.1007/s43630-024-00676-6","url":null,"abstract":"<p><p>This paper investigates the evolution of changes in surface ultraviolet (UV) radiation globally, emphasizing the significant impacts of key factors influencing its variability, i.e., total column ozone, aerosols, clouds, and surface reflectivity. Simulations of UV radiation were performed by the UVSPEC radiative transfer model and span from the mid-twentieth century to the end of the twenty-first century. Input data were derived from eleven Earth System Models that participated in the 6th Phase of the Coupled Model Intercomparison Project (CMIP6). The UV Index (UVI) simulations for the late twentieth century indicate an increase in UVI levels relative to the 1950s in the Southern Hemisphere's mid and high latitudes, attributed to ozone depletion, and decreases in southeastern Asia due to increases in aerosols. Projections of changes in UVI for the last decade of the twenty-first century were derived for three Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP3-7.0, and SSP5-8.5. Under SSP1-2.6, the scenario with the lowest greenhouse gas (GHG) and aerosol emissions, UVI is projected to increase relative to the 1950s by up to 20% in Europe and North America and to decrease by as much as - 10% over tropical and polar regions. Under SSP3-7.0 and SSP5-8.5, scenarios with higher GHG and aerosol emissions, UVI changes are generally negative globally due to ozone recovery and increases in aerosol optical depth, while localized positive changes are found over Central and South America, Europe, Africa, and the Pacific and Indian Oceans. The changes in the biologically effective solar irradiance for plant growth exhibit similar geographical patterns to UVI with slight differences, due to weaker sensitivity to changes in ozone.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photophysical behavior of meso-N-butylcarbazole-substituted BODIPY in different nano-scale organized media.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-21 DOI: 10.1007/s43630-024-00678-4
E Anjana, Iti Gupta, Ashok Kumar Mishra

The present work focuses on the photophysical behavior of meso-N-butylcarbazole-substituted BODIPY (CBZ-BDP) in different organized media towards exploring the possible use of the dye as a molecular sensor and imaging agent. The molecule shows an appreciable change in absorption and emission spectra at 75% water-acetonitrile mixture compared to pure acetonitrile. In water-acetonitrile mixture, it displays aggregate-induced emission (AIE) bands. New emission peaks are observed at 560 nm and 630 nm, corresponding to LE (locally excited) and ICT (intramolecular charge transfer) states of CBZ-BDP aggregates. The fluorescence anisotropy studies of CBZ-BDP in glycerol medium show its better sensitivity towards the microenvironment. CBZ-BDP was used to probe various microheterogeneous systems like bile salts, pluronics, and lipid bilayer systems in aqueous medium. The dye displays sensitive variation in emission intensity and fluorescence anisotropy in sodium cholate (NaC) bile salt in aqueous medium as a function of the bile salt concentration. The molecule detects the temperature-induced phase transitions in pluronic P123 and F127, as well as 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipid bilayer systems in aqueous medium. These studies strongly suggest that CBZ-BDP can be used as an efficient fluorescent probe in sensing the micro-environmental changes in bile salts, pluronics, and lipid bilayers in aqueous medium. The imaging studies of CBZ-BDP-embedded Giant Unilamellar Vesicles (GUVs) were carried out. The molecule stains the lipid bilayers and displays bright-green fluorescent images, suggesting its potential in lipid bilayer imaging.

{"title":"Photophysical behavior of meso-N-butylcarbazole-substituted BODIPY in different nano-scale organized media.","authors":"E Anjana, Iti Gupta, Ashok Kumar Mishra","doi":"10.1007/s43630-024-00678-4","DOIUrl":"https://doi.org/10.1007/s43630-024-00678-4","url":null,"abstract":"<p><p>The present work focuses on the photophysical behavior of meso-N-butylcarbazole-substituted BODIPY (CBZ-BDP) in different organized media towards exploring the possible use of the dye as a molecular sensor and imaging agent. The molecule shows an appreciable change in absorption and emission spectra at 75% water-acetonitrile mixture compared to pure acetonitrile. In water-acetonitrile mixture, it displays aggregate-induced emission (AIE) bands. New emission peaks are observed at 560 nm and 630 nm, corresponding to LE (locally excited) and ICT (intramolecular charge transfer) states of CBZ-BDP aggregates. The fluorescence anisotropy studies of CBZ-BDP in glycerol medium show its better sensitivity towards the microenvironment. CBZ-BDP was used to probe various microheterogeneous systems like bile salts, pluronics, and lipid bilayer systems in aqueous medium. The dye displays sensitive variation in emission intensity and fluorescence anisotropy in sodium cholate (NaC) bile salt in aqueous medium as a function of the bile salt concentration. The molecule detects the temperature-induced phase transitions in pluronic P123 and F127, as well as 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipid bilayer systems in aqueous medium. These studies strongly suggest that CBZ-BDP can be used as an efficient fluorescent probe in sensing the micro-environmental changes in bile salts, pluronics, and lipid bilayers in aqueous medium. The imaging studies of CBZ-BDP-embedded Giant Unilamellar Vesicles (GUVs) were carried out. The molecule stains the lipid bilayers and displays bright-green fluorescent images, suggesting its potential in lipid bilayer imaging.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A colorimetric and ratiometric fluorescent probe of hypochlorous acid and its bio-imaging application.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-20 DOI: 10.1007/s43630-024-00672-w
Yumiao Sheng, Kedian Xu, Zhenzhen Wang, Yunling Gao

A new ratiometric and colorimetric fluorescent probe HTD was synthesized based on the reaction of 4-aminophenyl boronic acid pinacol ester and 4-(3-formyl-4-hydroxyphenyl) benzonitrile. The probe exhibited a unique fluorescence response to hypochlorous acid and had good anti-interference performance in the presence of other interference. When HTD met the NaClO, the light orange fluorescence was changed to green with the blue-shifted emission wavelength from 550 to 500 nm. Moreover, the absorbance of HTD's UV-vis at 300 nm and 375 nm decreased in the presence of NaClO. The limit of detection was 1.83 × 10-7 M and 2.96 × 10-6 M based on the fluorescence and UV-vis titration data. NMR, HRMS, and IR spectra suggested that the possible sensing mechanism of HTD to NaClO was the formation of initial compound 4-(3-formyl-4-hydroxyphenyl) benzonitrile due to the oxidation of hypochlorous acid in aqueous solution. The portable test strips were obtained, and the real water sample test reached good results with spiking recoveries among 92.00% ~ 103.25%. Finally, endogenous hypochlorous acid produced by LPS and PMA was successfully detected by HTD in living mice using in situ fluorescence bioimaging.

{"title":"A colorimetric and ratiometric fluorescent probe of hypochlorous acid and its bio-imaging application.","authors":"Yumiao Sheng, Kedian Xu, Zhenzhen Wang, Yunling Gao","doi":"10.1007/s43630-024-00672-w","DOIUrl":"https://doi.org/10.1007/s43630-024-00672-w","url":null,"abstract":"<p><p>A new ratiometric and colorimetric fluorescent probe HTD was synthesized based on the reaction of 4-aminophenyl boronic acid pinacol ester and 4-(3-formyl-4-hydroxyphenyl) benzonitrile. The probe exhibited a unique fluorescence response to hypochlorous acid and had good anti-interference performance in the presence of other interference. When HTD met the NaClO, the light orange fluorescence was changed to green with the blue-shifted emission wavelength from 550 to 500 nm. Moreover, the absorbance of HTD's UV-vis at 300 nm and 375 nm decreased in the presence of NaClO. The limit of detection was 1.83 × 10<sup>-7</sup> M and 2.96 × 10<sup>-6</sup> M based on the fluorescence and UV-vis titration data. NMR, HRMS, and IR spectra suggested that the possible sensing mechanism of HTD to NaClO was the formation of initial compound 4-(3-formyl-4-hydroxyphenyl) benzonitrile due to the oxidation of hypochlorous acid in aqueous solution. The portable test strips were obtained, and the real water sample test reached good results with spiking recoveries among 92.00% ~ 103.25%. Finally, endogenous hypochlorous acid produced by LPS and PMA was successfully detected by HTD in living mice using in situ fluorescence bioimaging.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of ultraviolet filters and their impact on aquatic environments.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-20 DOI: 10.1007/s43630-024-00674-8
Garett J Grant, Henry W Lim, Tasneem F Mohammad

Numerous anthropogenic ultraviolet filters (UVF) have been detected in aquatic environments and concerns have arisen regarding their potential impacts on aquatic organisms. This manuscript reviews the environmental concentrations and potential toxicity of various UVF. The highest concentrations of UVF are typically observed near frequently visited recreational areas and during peak water-activity periods, which suggests that sunscreen application correlates with noticeable alterations in UVF concentrations. Aquatic concentrations of certain filters have sporadically exceeded 10 μg/L, although most measurements remain below 1 µg/L, which is below commonly reported toxicity levels. UVF have also been detected in aquatic organisms, typically ranging from nondetectable levels to a few hundred ng/g, depending on the species. The toxic effects from UVF, such as coral bleaching and diminished growth, have been observed in laboratory settings, however, toxicity tends to manifest only at significantly higher levels than what is typically detected in aquatic environments. Further research is imperative to provide consumers with improved guidance on selecting sunscreen containing UVF that poses the least environmental risk.

{"title":"A review of ultraviolet filters and their impact on aquatic environments.","authors":"Garett J Grant, Henry W Lim, Tasneem F Mohammad","doi":"10.1007/s43630-024-00674-8","DOIUrl":"https://doi.org/10.1007/s43630-024-00674-8","url":null,"abstract":"<p><p>Numerous anthropogenic ultraviolet filters (UVF) have been detected in aquatic environments and concerns have arisen regarding their potential impacts on aquatic organisms. This manuscript reviews the environmental concentrations and potential toxicity of various UVF. The highest concentrations of UVF are typically observed near frequently visited recreational areas and during peak water-activity periods, which suggests that sunscreen application correlates with noticeable alterations in UVF concentrations. Aquatic concentrations of certain filters have sporadically exceeded 10 μg/L, although most measurements remain below 1 µg/L, which is below commonly reported toxicity levels. UVF have also been detected in aquatic organisms, typically ranging from nondetectable levels to a few hundred ng/g, depending on the species. The toxic effects from UVF, such as coral bleaching and diminished growth, have been observed in laboratory settings, however, toxicity tends to manifest only at significantly higher levels than what is typically detected in aquatic environments. Further research is imperative to provide consumers with improved guidance on selecting sunscreen containing UVF that poses the least environmental risk.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type I and Type II photosensitization of DNA etheno adducts.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1007/s43630-024-00663-x
Paloma Lizondo-Aranda, Gemma M Rodríguez-Muñiz, Miguel A Miranda, Belinda Heyne, Virginie Lhiaubet-Vallet

Photophysical and photochemical studies were carried out to examine the photoreactivity of etheno adducts, 1,N6-ethenoadenine (εdA) and 1,N2-ethenoguanine (εdG), in the presence of two well-known photosensitizers acting by Type I and/or Type II mechanisms such as 4-carboxybenzophenone (CBP) and rose Bengal (RB), respectively. Steady-state photolysis experiments combined with HPLC and mass spectroscopy measurements lead to photoproducts that correspond to the repaired nucleosides. To determine the mechanism of this photooxidation processes, phosphorescence spectroscopy, direct detection of singlet oxygen luminescence and laser flash photolysis were carried out. This work establishes that εdG and εdA are sensitive to both types of processes (Type I and II).

研究人员进行了光物理和光化学研究,以检验 1,N6-乙烯腺嘌呤(εdA)和 1,N2-乙烯鸟嘌呤(εdG)这两种乙烯加合物在两种著名的光敏剂(分别为 4-羧基二苯甲酮(CBP)和玫瑰红(RB))作用下的光反应活性。稳态光解实验结合高效液相色谱法(HPLC)和质谱测量法得出了与修复的核苷相对应的光反应产物。为了确定这种光氧化过程的机理,研究人员进行了磷光光谱分析、直接检测单线态氧发光和激光闪烁光解。这项工作证实,εdG 和 εdA 对两种类型的过程(I 型和 II 型)都很敏感。
{"title":"Type I and Type II photosensitization of DNA etheno adducts.","authors":"Paloma Lizondo-Aranda, Gemma M Rodríguez-Muñiz, Miguel A Miranda, Belinda Heyne, Virginie Lhiaubet-Vallet","doi":"10.1007/s43630-024-00663-x","DOIUrl":"https://doi.org/10.1007/s43630-024-00663-x","url":null,"abstract":"<p><p>Photophysical and photochemical studies were carried out to examine the photoreactivity of etheno adducts, 1,N<sup>6</sup>-ethenoadenine (εdA) and 1,N<sup>2</sup>-ethenoguanine (εdG), in the presence of two well-known photosensitizers acting by Type I and/or Type II mechanisms such as 4-carboxybenzophenone (CBP) and rose Bengal (RB), respectively. Steady-state photolysis experiments combined with HPLC and mass spectroscopy measurements lead to photoproducts that correspond to the repaired nucleosides. To determine the mechanism of this photooxidation processes, phosphorescence spectroscopy, direct detection of singlet oxygen luminescence and laser flash photolysis were carried out. This work establishes that εdG and εdA are sensitive to both types of processes (Type I and II).</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two isoniazid-based chemosensors for the detection of cyanide ions in solution: an experimental and computational study.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-15 DOI: 10.1007/s43630-024-00671-x
M N Zavalishin, A A Guschin, G A Nikitin, G A Gamov

Colorimetric chemosensors L1 and L2, based on isoniazid hydrazones, have been designed for the highly sensitive and selective recognition of CN- ion. Competing experiments were conducted with various other anions such as F-, Cl-, Br-, I-, SCN-, ClO3-, ClO4-, NO3-, H2PO4-, SO32-, and HSO4- in an acetonitrile solution. In the UV-Vis spectra, a bathochromic shift in the absorption bands of both hydrazones was observed following the addition of cyanide. These spectral changes were accompanied by a color transition from transparent to orange for L1 and from pale yellow to peach for L2, which is attributed to the deprotonation of the chemosensors. The detection limits for cyanide ions were determined to be 0.36 µM for L1 and 2.79 µM for L2 using the 3σ rule. Quantum chemical calculations were employed to optimize the structure of the chemosensors, compute their UV-Vis spectra, and confirm the proposed detection mechanism for CN⁻ ions.

基于异烟肼酰肼设计的比色化学传感器 L1 和 L2 可高灵敏、高选择性地识别 CN- 离子。在乙腈溶液中与其他各种阴离子,如 F-、Cl-、Br-、I-、SCN-、ClO3-、ClO4-、NO3-、H2PO4-、SO32- 和 HSO4-进行了竞争实验。在紫外可见光谱中,加入氰化物后,两种肼的吸收带都发生了浴色偏移。伴随着这些光谱变化,L1 的颜色从透明变为橙色,L2 的颜色从淡黄色变为桃红色,这归因于化学传感器的去质子化作用。根据 3σ 规则,确定 L1 和 L2 的氰离子检测限分别为 0.36 µM 和 2.79 µM。量子化学计算用于优化化学传感器的结构、计算其紫外可见光谱,以及确认所提出的 CN 离子检测机制。
{"title":"Two isoniazid-based chemosensors for the detection of cyanide ions in solution: an experimental and computational study.","authors":"M N Zavalishin, A A Guschin, G A Nikitin, G A Gamov","doi":"10.1007/s43630-024-00671-x","DOIUrl":"https://doi.org/10.1007/s43630-024-00671-x","url":null,"abstract":"<p><p>Colorimetric chemosensors L<sub>1</sub> and L<sub>2</sub>, based on isoniazid hydrazones, have been designed for the highly sensitive and selective recognition of CN<sup>-</sup> ion. Competing experiments were conducted with various other anions such as F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, SCN<sup>-</sup>, ClO<sub>3</sub><sup>-</sup>, ClO<sub>4</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, SO<sub>3</sub><sup>2-</sup>, and HSO<sub>4</sub><sup>-</sup> in an acetonitrile solution. In the UV-Vis spectra, a bathochromic shift in the absorption bands of both hydrazones was observed following the addition of cyanide. These spectral changes were accompanied by a color transition from transparent to orange for L<sub>1</sub> and from pale yellow to peach for L<sub>2</sub>, which is attributed to the deprotonation of the chemosensors. The detection limits for cyanide ions were determined to be 0.36 µM for L<sub>1</sub> and 2.79 µM for L<sub>2</sub> using the 3σ rule. Quantum chemical calculations were employed to optimize the structure of the chemosensors, compute their UV-Vis spectra, and confirm the proposed detection mechanism for CN⁻ ions.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction.
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-10 DOI: 10.1007/s43630-024-00667-7
Tomoya Oshikiri, Yasutaka Matsuo, Hiromasa Niinomi, Masaru Nakagawa

The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO2 and Au film. The differential absorption of the Au-NWs coupled with the FP nanocavities under left- and right-handed circularly polarized light irradiations in the far field was significantly enhanced compared with the differential absorption without the FP nanocavities. Far- and near-field analyses by numerical simulation revealed that the Au-NWs coupled with the FP nanocavities formed a collective mode in the near field, and the collective mode represented the chiroptical response in the far field. The light field with the large helicity, can be used in chiral light-matter interactions. The concept of collective mode formation using isotropic metal nanodisks coupled with FP nanocavities provides a platform for controlling complex light fields.

材料的手性和自旋响应因其引入光-物质相互作用新科学的潜力而备受关注。我们证明,在具有手性排列的局部表面等离子体共振(LSPRs)与法布里-佩罗特(FP)纳米腔模式之间的模态耦合作用下,集体模式的形成可诱发自旋响应。我们在二氧化钛和金膜的 FP 纳米腔体上制作了一簇具有手性排列的各向同性金纳米盘(金纳米风车,Au-NWs)。在左旋和右旋圆偏振光照射下,在远场中与 FP 纳米空腔耦合的 Au-NWs 的差分吸收比没有 FP 纳米空腔的差分吸收显著增强。通过数值模拟进行的远场和近场分析表明,与 FP 纳米空腔耦合的 Au-NWs 在近场形成了一个集体模式,该集体模式代表了远场的千扰响应。具有大螺旋度的光场可用于手性光物质相互作用。利用各向同性金属纳米盘和 FP 纳米腔形成集体模式的概念为控制复杂光场提供了一个平台。
{"title":"Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction.","authors":"Tomoya Oshikiri, Yasutaka Matsuo, Hiromasa Niinomi, Masaru Nakagawa","doi":"10.1007/s43630-024-00667-7","DOIUrl":"https://doi.org/10.1007/s43630-024-00667-7","url":null,"abstract":"<p><p>The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO<sub>2</sub> and Au film. The differential absorption of the Au-NWs coupled with the FP nanocavities under left- and right-handed circularly polarized light irradiations in the far field was significantly enhanced compared with the differential absorption without the FP nanocavities. Far- and near-field analyses by numerical simulation revealed that the Au-NWs coupled with the FP nanocavities formed a collective mode in the near field, and the collective mode represented the chiroptical response in the far field. The light field with the large helicity, can be used in chiral light-matter interactions. The concept of collective mode formation using isotropic metal nanodisks coupled with FP nanocavities provides a platform for controlling complex light fields.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photochemical & Photobiological Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1