Rong Zhou, Rui Huang, Yue Xu, Dandan Zhang, Li Gu, Yun Su, Xirui Chen, Wodong Shi, Jing Sun, Ping Gu, Ni Ni, Xiaoping Bi
Repair of large bone defects is a sophisticated physiological process involving the meticulous orchestration of cell activation, proliferation, and differentiation. Cellular interactions between different cell types are paramount for successful bone regeneration, making it a challenging yet fascinating area of research and clinical practice. With increasing evidence underscoring the essential role of exosomes in facilitating intercellular and cell-microenvironment communication, they have emerged as an encouraging therapeutic strategy to promote bone repair due to their non-immunogenicity, diverse sources, and potent bioactivity. In this study, we characterized a distinctive population of Krt14+Ctsk+ cells from the orbital mucoperiosteum. In vitro experiments confirmed that exosomes from Krt14+Ctsk+ cells dramatically boosted the capacities of human umbilical vein endothelial cells (HUVECs) to proliferate, migrate, and induce angiogenesis. Additionally, the exosomes notably elevated the expression of osteogenic markers, thereby indicating their potential to augment osteogenic capabilities. Furthermore, in vivo experiments utilizing a rat calvarial defect model verified that exosome-loaded sodium alginate (SA) hydrogels accelerated local vascularized bone regeneration within the defective regions. Collectively, these findings suggest that exosomes secreted by Krt14+Ctsk+ cells offer an innovative method to accelerate bone repair via coupling enhanced osteogenesis and angiogenesis, highlighting the therapeutic potential in bone repair.
{"title":"Exosomes derived from mucoperiosteum Krt14<sup>+</sup>Ctsk<sup>+</sup> cells promote bone regeneration by coupling enhanced osteogenesis and angiogenesis.","authors":"Rong Zhou, Rui Huang, Yue Xu, Dandan Zhang, Li Gu, Yun Su, Xirui Chen, Wodong Shi, Jing Sun, Ping Gu, Ni Ni, Xiaoping Bi","doi":"10.1039/d4bm00673a","DOIUrl":"https://doi.org/10.1039/d4bm00673a","url":null,"abstract":"<p><p>Repair of large bone defects is a sophisticated physiological process involving the meticulous orchestration of cell activation, proliferation, and differentiation. Cellular interactions between different cell types are paramount for successful bone regeneration, making it a challenging yet fascinating area of research and clinical practice. With increasing evidence underscoring the essential role of exosomes in facilitating intercellular and cell-microenvironment communication, they have emerged as an encouraging therapeutic strategy to promote bone repair due to their non-immunogenicity, diverse sources, and potent bioactivity. In this study, we characterized a distinctive population of Krt14<sup>+</sup>Ctsk<sup>+</sup> cells from the orbital mucoperiosteum. <i>In vitro</i> experiments confirmed that exosomes from Krt14<sup>+</sup>Ctsk<sup>+</sup> cells dramatically boosted the capacities of human umbilical vein endothelial cells (HUVECs) to proliferate, migrate, and induce angiogenesis. Additionally, the exosomes notably elevated the expression of osteogenic markers, thereby indicating their potential to augment osteogenic capabilities. Furthermore, <i>in vivo</i> experiments utilizing a rat calvarial defect model verified that exosome-loaded sodium alginate (SA) hydrogels accelerated local vascularized bone regeneration within the defective regions. Collectively, these findings suggest that exosomes secreted by Krt14<sup>+</sup>Ctsk<sup>+</sup> cells offer an innovative method to accelerate bone repair <i>via</i> coupling enhanced osteogenesis and angiogenesis, highlighting the therapeutic potential in bone repair.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (t1/2 = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.
{"title":"Functional nanochaperones for PEGylated insulin delivery in long-term glycemic control.","authors":"Xiaohui Wu, Yanli Zhang, Shuoshuo Song, Sainan Liu, Feihe Ma, Rujiang Ma, Linqi Shi","doi":"10.1039/d4bm01163e","DOIUrl":"https://doi.org/10.1039/d4bm01163e","url":null,"abstract":"<p><p>PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (<i>t</i><sub>1/2</sub> = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuebin Ma, Kanaparedu P C Sekhar, Peiyu Zhang, Jiwei Cui
Injectable hydrogels, as a class of highly hydrated soft materials, are of interest for biomedicine due to their precise implantation and minimally invasive local drug delivery at the implantation site. The combination of in situ gelation ability and versatile therapeutic agent/cell loading capabilities makes injectable hydrogels ideal materials for drug delivery, tissue engineering, wound dressing and tumor treatment. In particular, the stimuli-responsive injectable hydrogels that can respond to different stimuli in and out of the body (e.g., temperature, pH, redox conditions, light, magnetic fields, etc.) have significant advantages in biomedicine. Here, we summarize the design strategies, advantages, and recent developments of stimuli-responsive injectable hydrogels in different biomedical fields. Challenges and future perspectives of stimuli-responsive injectable hydrogels are also discussed and the future steps necessary to fulfill the potential of these promising materials are highlighted.
{"title":"Advances in stimuli-responsive injectable hydrogels for biomedical applications.","authors":"Xuebin Ma, Kanaparedu P C Sekhar, Peiyu Zhang, Jiwei Cui","doi":"10.1039/d4bm00956h","DOIUrl":"https://doi.org/10.1039/d4bm00956h","url":null,"abstract":"<p><p>Injectable hydrogels, as a class of highly hydrated soft materials, are of interest for biomedicine due to their precise implantation and minimally invasive local drug delivery at the implantation site. The combination of <i>in situ</i> gelation ability and versatile therapeutic agent/cell loading capabilities makes injectable hydrogels ideal materials for drug delivery, tissue engineering, wound dressing and tumor treatment. In particular, the stimuli-responsive injectable hydrogels that can respond to different stimuli in and out of the body (<i>e.g.</i>, temperature, pH, redox conditions, light, magnetic fields, <i>etc</i>.) have significant advantages in biomedicine. Here, we summarize the design strategies, advantages, and recent developments of stimuli-responsive injectable hydrogels in different biomedical fields. Challenges and future perspectives of stimuli-responsive injectable hydrogels are also discussed and the future steps necessary to fulfill the potential of these promising materials are highlighted.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenna Shi, Hui Xue, Tianwei Du, Jun-Li Liu, Victor Ling, Yuzhuo Wang, Zhenwei Ma, Zu-Hua Gao
The human body possesses natural barriers, such as skin and mucosa, which limit the effective delivery of therapeutics and integration of medical devices to target tissues. Various strategies have been deployed to breach these barriers mechanically, chemically, or electronically. The development of various penetration enhancers (PEs) offers a promising solution due to their ability to increase tissue permeability using readily available reagents. However, existing PE-mediated delivery methods often rely on weak gel or liquid drug formulations, which are not ideal for sustained local delivery. Hydrogel adhesives that can seamlessly interface biological tissues with controlled drug delivery could potentially resolve these issues. Here, we demonstrate that tough adhesion between drug-laden hydrogels and biological tissue (e.g. skin and tumours) can lead to effective local delivery of drugs deep into targeted tissues by leveraging the enhanced tissue penetration mediated by PEs. The drug release profile of the hydrogel adhesives can be fine-tuned by further engineering the nanocomposite hydrogel matrix to elute chemotherapeutics from 2 weeks to 2 months. Using a 3D tumour spheroid model, we demonstrated that PEs increased the cancer-killing effectiveness of doxorubicin by facilitating its delivery into tumour microtissues. Therefore, the proposed tough bioadhesion and drug delivery strategy modulated by PEs holds promise as a platform technique to develop next-generation wearable and implantable devices for cancer management and regenerative medicine.
人体具有皮肤和粘膜等天然屏障,这些屏障限制了向目标组织有效输送治疗药物和整合医疗设备。人们采取了各种策略,通过机械、化学或电子手段来突破这些障碍。各种渗透促进剂(PE)的开发提供了一种很有前景的解决方案,因为它们能够利用现成的试剂增加组织的渗透性。然而,现有的以 PE 为媒介的给药方法通常依赖于弱凝胶或液体药物制剂,这对于持续的局部给药并不理想。水凝胶粘合剂能将生物组织与可控给药无缝衔接,有可能解决这些问题。在这里,我们证明了含药水凝胶与生物组织(如皮肤和肿瘤)之间的强力粘附可以利用聚乙烯介导的增强组织穿透力,将药物有效地局部输送到目标组织的深部。通过进一步设计纳米复合水凝胶基质,可对水凝胶粘合剂的药物释放曲线进行微调,使化疗药物的洗脱时间从 2 周延长至 2 个月。我们利用三维肿瘤球体模型证明,PE 可促进多柔比星向肿瘤微组织的递送,从而提高多柔比星的杀癌效果。因此,由聚乙烯调制的韧性生物粘附和药物输送策略有望成为开发下一代可穿戴和植入式癌症治疗和再生医学设备的平台技术。
{"title":"Penetration enhancers strengthen tough hydrogel bioadhesion and modulate locoregional drug delivery.","authors":"Wenna Shi, Hui Xue, Tianwei Du, Jun-Li Liu, Victor Ling, Yuzhuo Wang, Zhenwei Ma, Zu-Hua Gao","doi":"10.1039/d4bm00807c","DOIUrl":"https://doi.org/10.1039/d4bm00807c","url":null,"abstract":"<p><p>The human body possesses natural barriers, such as skin and mucosa, which limit the effective delivery of therapeutics and integration of medical devices to target tissues. Various strategies have been deployed to breach these barriers mechanically, chemically, or electronically. The development of various penetration enhancers (PEs) offers a promising solution due to their ability to increase tissue permeability using readily available reagents. However, existing PE-mediated delivery methods often rely on weak gel or liquid drug formulations, which are not ideal for sustained local delivery. Hydrogel adhesives that can seamlessly interface biological tissues with controlled drug delivery could potentially resolve these issues. Here, we demonstrate that tough adhesion between drug-laden hydrogels and biological tissue (<i>e.g.</i> skin and tumours) can lead to effective local delivery of drugs deep into targeted tissues by leveraging the enhanced tissue penetration mediated by PEs. The drug release profile of the hydrogel adhesives can be fine-tuned by further engineering the nanocomposite hydrogel matrix to elute chemotherapeutics from 2 weeks to 2 months. Using a 3D tumour spheroid model, we demonstrated that PEs increased the cancer-killing effectiveness of doxorubicin by facilitating its delivery into tumour microtissues. Therefore, the proposed tough bioadhesion and drug delivery strategy modulated by PEs holds promise as a platform technique to develop next-generation wearable and implantable devices for cancer management and regenerative medicine.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. In situ MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, in situ modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how in situ modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of in situ modified MSNs.
{"title":"<i>In situ</i> modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications.","authors":"Chloe Trayford, Sabine van Rijt","doi":"10.1039/d4bm00094c","DOIUrl":"10.1039/d4bm00094c","url":null,"abstract":"<p><p>Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. <i>In situ</i> MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, <i>in situ</i> modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how <i>in situ</i> modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of <i>in situ</i> modified MSNs.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bipin Gaihre, Emily Camilleri, Maryam Tilton, Maria D Astudillo Potes, Xifeng Liu, Fabrice Lucien, Lichun Lu
LAPONITE®-based drug delivery systems offer many advantages due to the unique ionic and physical properties of LAPONITE®. The high ionicity and large surface area of LAPONITE® nanoparticles enable the intercalation and dissolution of biomolecules. In this study, we explored the potential of LAPONITE® as a carrier for FG-4592 to support angiogenesis and as a carrier for bone morphogenic protein-2 (BMP-2) to support osteogenesis. Interestingly, we found that LAPONITE® promoted the FG-4592 induced upregulation of vascular endothelial growth factor (VEGF) gene expression of human umbilical cord endothelial cells (HUVECs). Additionally, we observed that LAPONITE® could provide a sustained release of BMP-2 and significantly potentiate the osteogenic effects of BMP-2 on adipose derived mesenchymal stem cells (AMSCs). Overall, current findings on the LAPONITE®-drug/protein model system provide a unique way to potentiate the angiogenic activities of FG-4592 on HUVECs and osteogenic effects of BMP-2 on AMSCs for tissue engineering application. Future studies will be directed towards gaining a deeper understanding of these effects on a co-culture system of HUVECs and AMSCs.
{"title":"LAPONITE® nano-silicates potentiate the angiogenic effects of FG-4592 and osteogenic effects of BMP-2.","authors":"Bipin Gaihre, Emily Camilleri, Maryam Tilton, Maria D Astudillo Potes, Xifeng Liu, Fabrice Lucien, Lichun Lu","doi":"10.1039/d4bm00636d","DOIUrl":"https://doi.org/10.1039/d4bm00636d","url":null,"abstract":"<p><p>LAPONITE®-based drug delivery systems offer many advantages due to the unique ionic and physical properties of LAPONITE®. The high ionicity and large surface area of LAPONITE® nanoparticles enable the intercalation and dissolution of biomolecules. In this study, we explored the potential of LAPONITE® as a carrier for FG-4592 to support angiogenesis and as a carrier for bone morphogenic protein-2 (BMP-2) to support osteogenesis. Interestingly, we found that LAPONITE® promoted the FG-4592 induced upregulation of vascular endothelial growth factor (VEGF) gene expression of human umbilical cord endothelial cells (HUVECs). Additionally, we observed that LAPONITE® could provide a sustained release of BMP-2 and significantly potentiate the osteogenic effects of BMP-2 on adipose derived mesenchymal stem cells (AMSCs). Overall, current findings on the LAPONITE®-drug/protein model system provide a unique way to potentiate the angiogenic activities of FG-4592 on HUVECs and osteogenic effects of BMP-2 on AMSCs for tissue engineering application. Future studies will be directed towards gaining a deeper understanding of these effects on a co-culture system of HUVECs and AMSCs.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryam Asadikorayem, Lucia G Brunel, Patrick Weber, Sarah C Heilshorn, Marcy Zenobi-Wong
Granular hydrogels comprised of jammed, crosslinked microgels offer great potential as biomaterial scaffolds for cell-based therapies, including for cartilage tissue regeneration. As stiffness and porosity of hydrogels affect the phenotype of encapsulated cells and the extent of tissue regeneration, the design of tunable granular hydrogels to control and optimize these parameters is highly desirable. We hypothesized that chondrogenesis could be modulated using a granular hydrogel platform based on biocompatible, zwitterionic materials with independent intra- and inter-microgel crosslinking mechanisms. Microgels are made with mechanical fragmentation of photocrosslinked zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) hydrogels, and secondarily crosslinked in the presence of cells using horseradish peroxide (HRP) to produce cell-laden granular hydrogels. We varied the intra-microgel crosslinking density to produce microgels with varied stiffnesses (1-3 kPa) and swelling properties. These microgels, when resuspended at the same weight fraction and secondarily crosslinked, resulted in granular hydrogels with distinct porosities (5-40%) due to differing swelling properties. The greatest extent of chondrogenesis was achieved in scaffolds with the highest microgel stiffness and highest porosity. However, when scaffold porosity was kept constant and just microgel stiffness varied, cell phenotype and chondrogenesis were similar across scaffolds. These results indicate the dominant role of granular scaffold porosity on chondrogenesis, whereas microgel stiffness appears to play a relatively minor role. These observations are in contrast to cells encapsulated within conventional bulk hydrogels, where stiffness has been shown to significantly affect chondrocyte response. In summary, we introduce chemically-defined, zwitterionic biomaterials to fabricate versatile granular hydrogels allowing for tunable scaffold porosity and microgel stiffness to study and influence chondrogenesis.
{"title":"Porosity dominates over microgel stiffness for promoting chondrogenesis in zwitterionic granular hydrogels.","authors":"Maryam Asadikorayem, Lucia G Brunel, Patrick Weber, Sarah C Heilshorn, Marcy Zenobi-Wong","doi":"10.1039/d4bm00233d","DOIUrl":"10.1039/d4bm00233d","url":null,"abstract":"<p><p>Granular hydrogels comprised of jammed, crosslinked microgels offer great potential as biomaterial scaffolds for cell-based therapies, including for cartilage tissue regeneration. As stiffness and porosity of hydrogels affect the phenotype of encapsulated cells and the extent of tissue regeneration, the design of tunable granular hydrogels to control and optimize these parameters is highly desirable. We hypothesized that chondrogenesis could be modulated using a granular hydrogel platform based on biocompatible, zwitterionic materials with independent intra- and inter-microgel crosslinking mechanisms. Microgels are made with mechanical fragmentation of photocrosslinked zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) hydrogels, and secondarily crosslinked in the presence of cells using horseradish peroxide (HRP) to produce cell-laden granular hydrogels. We varied the intra-microgel crosslinking density to produce microgels with varied stiffnesses (1-3 kPa) and swelling properties. These microgels, when resuspended at the same weight fraction and secondarily crosslinked, resulted in granular hydrogels with distinct porosities (5-40%) due to differing swelling properties. The greatest extent of chondrogenesis was achieved in scaffolds with the highest microgel stiffness and highest porosity. However, when scaffold porosity was kept constant and just microgel stiffness varied, cell phenotype and chondrogenesis were similar across scaffolds. These results indicate the dominant role of granular scaffold porosity on chondrogenesis, whereas microgel stiffness appears to play a relatively minor role. These observations are in contrast to cells encapsulated within conventional bulk hydrogels, where stiffness has been shown to significantly affect chondrocyte response. In summary, we introduce chemically-defined, zwitterionic biomaterials to fabricate versatile granular hydrogels allowing for tunable scaffold porosity and microgel stiffness to study and influence chondrogenesis.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaifali Dhingra, Vidit Gaur, Varsha Saini, Kajal Rana, Jayanta Bhattacharyya, Thomas Loho, Sudip Ray, Avinash Bajaj, Sampa Saha
Retraction of 'Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections' by Shaifali Dhingra et al., Biomater. Sci., 2022, 10, 3856-3877, https://doi.org/10.1039/D2BM00245K.
Accumulatively, cellular behaviours triggered by biochemical cues have been widely explored and the focus of research is gradually shifting to biophysical cues. Compared to physical parameters such as stiffness, substrate morphology and viscoelasticity, the influence of viscosity on cellular behaviours is relatively unexplored and overlooked. Thus, in this study, the influence of viscosity on the adipogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was investigated by adjusting the viscosity of the culture medium. Viscosity exhibited different effects on adipogenic and osteogenic differentiation of hMSCs during two-dimensional (2D) culture. High viscosity facilitated osteogenic while inhibiting adipogenic differentiation. During adipogenic differentiation, the effect of viscosity on cell proliferation was negligible. However, during osteogenic differentiation, high viscosity decreased cell proliferation. The different influence of viscosity could be explained by the activation of mechanotransduction regulators of Yes-associated protein (YAP) and β-catenin. High viscosity could promote YAP and β-catenin nuclear translocation during osteogenic differentiation, which was responsible for the increased osteogenesis. High viscosity inhibited adipogenesis through promoting YAP nuclear translocation. This study could broaden the understanding of how viscosity can affect stem cell differentiation during 2D culture, which is valuable for tissue engineering.
{"title":"Influence of viscosity on adipogenic and osteogenic differentiation of mesenchymal stem cells during 2D culture.","authors":"Chengyu Lu, Tianjiao Zeng, Man Wang, Toru Yoshitomi, Naoki Kawazoe, Yingnan Yang, Guoping Chen","doi":"10.1039/d4bm00710g","DOIUrl":"https://doi.org/10.1039/d4bm00710g","url":null,"abstract":"<p><p>Accumulatively, cellular behaviours triggered by biochemical cues have been widely explored and the focus of research is gradually shifting to biophysical cues. Compared to physical parameters such as stiffness, substrate morphology and viscoelasticity, the influence of viscosity on cellular behaviours is relatively unexplored and overlooked. Thus, in this study, the influence of viscosity on the adipogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was investigated by adjusting the viscosity of the culture medium. Viscosity exhibited different effects on adipogenic and osteogenic differentiation of hMSCs during two-dimensional (2D) culture. High viscosity facilitated osteogenic while inhibiting adipogenic differentiation. During adipogenic differentiation, the effect of viscosity on cell proliferation was negligible. However, during osteogenic differentiation, high viscosity decreased cell proliferation. The different influence of viscosity could be explained by the activation of mechanotransduction regulators of Yes-associated protein (YAP) and β-catenin. High viscosity could promote YAP and β-catenin nuclear translocation during osteogenic differentiation, which was responsible for the increased osteogenesis. High viscosity inhibited adipogenesis through promoting YAP nuclear translocation. This study could broaden the understanding of how viscosity can affect stem cell differentiation during 2D culture, which is valuable for tissue engineering.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Antonia Cassa, Piergiorgio Gentile, Joel Girón-Hernández, Gianluca Ciardelli, Irene Carmagnola
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
{"title":"Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices.","authors":"Maria Antonia Cassa, Piergiorgio Gentile, Joel Girón-Hernández, Gianluca Ciardelli, Irene Carmagnola","doi":"10.1039/d4bm00936c","DOIUrl":"https://doi.org/10.1039/d4bm00936c","url":null,"abstract":"<p><p>Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}