首页 > 最新文献

Biomaterials Science最新文献

英文 中文
MnO2-based nanoparticles remodeling tumor micro-environment to augment sonodynamic immunotherapy against breast cancer.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-09 DOI: 10.1039/d5bm00189g
Haiqin Liao, Mingyu Chen, Zhipeng Liao, Yi Luo, Sijie Chen, Long Wang, Zhigang Wang, Chengcheng Niu

The tumor microenvironment (TME) is characterized by a complex array of factors, including aerobic conditions, high glutathione (GSH) levels, acidic pH, and elevated hydrogen peroxide (H2O2) content, all of which promote cancer progression and contribute to poor prognosis. Fortunately, these challenges can be addressed using MnO2-based nanomaterials. In this study, we have designed and synthesized a Curcumin/MnO2@PLGA@4T1 cell membrane (CMP@4T1m) system aimed at remodelling the TME and enhancing sonodynamic immunotherapy for breast cancer. Through the homologous targeting ability of 4T1m, CMP@4T1m efficiently accumulates at the tumor site. Upon ultrasound irradiation, curcumin (Cur) acts as a sonosensitizer, generating cytotoxic reactive oxygen species (ROS) that induce immunogenic cell death (ICD), activate T-cell responses, and repolarize protumoral M2-like macrophages to antitumoral M1-like macrophages. In the TME, which is mildly acidic and enriched with GSH and H2O2, MnO2 not only oxidizes GSH to glutathione disulfide (GSSG) but also reacts with H2O2 and H+ to produce oxygen, alleviating hypoxia and significantly enhancing the sonodynamic immunotherapy effect. Additionally, Mn2+ generated during this process converts H2O2 into cytotoxic hydroxyl radicals (˙OH). This study thus lays the foundation for advancing cancer nanomedicine, offering a novel approach that integrates TME remodelling with sonodynamic immunotherapy.

{"title":"MnO<sub>2</sub>-based nanoparticles remodeling tumor micro-environment to augment sonodynamic immunotherapy against breast cancer.","authors":"Haiqin Liao, Mingyu Chen, Zhipeng Liao, Yi Luo, Sijie Chen, Long Wang, Zhigang Wang, Chengcheng Niu","doi":"10.1039/d5bm00189g","DOIUrl":"https://doi.org/10.1039/d5bm00189g","url":null,"abstract":"<p><p>The tumor microenvironment (TME) is characterized by a complex array of factors, including aerobic conditions, high glutathione (GSH) levels, acidic pH, and elevated hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) content, all of which promote cancer progression and contribute to poor prognosis. Fortunately, these challenges can be addressed using MnO<sub>2</sub>-based nanomaterials. In this study, we have designed and synthesized a Curcumin/MnO<sub>2</sub>@PLGA@4T1 cell membrane (CMP@4T1m) system aimed at remodelling the TME and enhancing sonodynamic immunotherapy for breast cancer. Through the homologous targeting ability of 4T1m, CMP@4T1m efficiently accumulates at the tumor site. Upon ultrasound irradiation, curcumin (Cur) acts as a sonosensitizer, generating cytotoxic reactive oxygen species (ROS) that induce immunogenic cell death (ICD), activate T-cell responses, and repolarize protumoral M2-like macrophages to antitumoral M1-like macrophages. In the TME, which is mildly acidic and enriched with GSH and H<sub>2</sub>O<sub>2</sub>, MnO<sub>2</sub> not only oxidizes GSH to glutathione disulfide (GSSG) but also reacts with H<sub>2</sub>O<sub>2</sub> and H<sup>+</sup> to produce oxygen, alleviating hypoxia and significantly enhancing the sonodynamic immunotherapy effect. Additionally, Mn<sup>2+</sup> generated during this process converts H<sub>2</sub>O<sub>2</sub> into cytotoxic hydroxyl radicals (˙OH). This study thus lays the foundation for advancing cancer nanomedicine, offering a novel approach that integrates TME remodelling with sonodynamic immunotherapy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnostics of brain tumor in the early stage: current status and future perspectives.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-09 DOI: 10.1039/d4bm01503g
Muhammad Ijaz, Ikram Hasan, Bilal Aslam, Yuqian Yan, Wenjun Zeng, Jingsi Gu, Jian Jin, Yinghe Zhang, Shaohua Wang, Lu Xing, Bing Guo

Early diagnosis of brain tumors is challenging due to their complexity and delicate structure. Conventional imaging techniques like MRI, CT, and PET are unable to provide detailed visualization of early-stage brain tumors. Early-stage detection of brain tumors is vital for enhancing patient outcomes and survival rates. So far, several scientists have dedicated their efforts to innovating advanced diagnostic probes to efficiently cross the BBB and selectively target brain tumors for optimal imaging. The integration of these techniques presents a viable pathway for non-invasive, accurate, and early-stage tumor identification. Herein, we provide a timely update on the various imaging probes and potential challenges for the diagnosis of early-stage brain tumors. Furthermore, this review highlights the significance of integrating advanced imaging probes for improving the early detection of brain tumors, ultimately enhancing treatment outcomes. Hopefully, this review will stimulate the interest of researchers to accelerate the development of new imaging probes and even their clinical translation for improving the early diagnosis of brain tumors.

{"title":"Diagnostics of brain tumor in the early stage: current status and future perspectives.","authors":"Muhammad Ijaz, Ikram Hasan, Bilal Aslam, Yuqian Yan, Wenjun Zeng, Jingsi Gu, Jian Jin, Yinghe Zhang, Shaohua Wang, Lu Xing, Bing Guo","doi":"10.1039/d4bm01503g","DOIUrl":"https://doi.org/10.1039/d4bm01503g","url":null,"abstract":"<p><p>Early diagnosis of brain tumors is challenging due to their complexity and delicate structure. Conventional imaging techniques like MRI, CT, and PET are unable to provide detailed visualization of early-stage brain tumors. Early-stage detection of brain tumors is vital for enhancing patient outcomes and survival rates. So far, several scientists have dedicated their efforts to innovating advanced diagnostic probes to efficiently cross the BBB and selectively target brain tumors for optimal imaging. The integration of these techniques presents a viable pathway for non-invasive, accurate, and early-stage tumor identification. Herein, we provide a timely update on the various imaging probes and potential challenges for the diagnosis of early-stage brain tumors. Furthermore, this review highlights the significance of integrating advanced imaging probes for improving the early detection of brain tumors, ultimately enhancing treatment outcomes. Hopefully, this review will stimulate the interest of researchers to accelerate the development of new imaging probes and even their clinical translation for improving the early diagnosis of brain tumors.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered hybrid cell membrane nanovesicles for potentiated cancer immunotherapy through dual immune checkpoint inhibition.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-09 DOI: 10.1039/d5bm00298b
Fuxu Yang, Han Xue, Yuxin Fan, Ting Zhang, Ting Wang, Fanlin Gu, Longxue Guan, Lisha Zhou, Xingang Guan, Guofu Chen

Immune checkpoint inhibitors (ICIs) have demonstrated remarkable success in treating various types of solid tumors; however, only a limited number of patients currently benefit from these therapeutic agents. Developing novel ICIs that elicit systemic and durable antitumor immune responses remains a significant challenge in improving immunotherapy outcomes. In this study, we engineered PD-1/LAG-3 receptors onto cell membrane nanovesicles to simultaneously block two immune checkpoints for the treatment of colorectal cancer. This dual-checkpoint blockade strategy led to significantly more potent tumor growth suppression in mice with MC38 xenografts compared to nanovesicles targeting PD-1 or LAG-3 alone. Notably, the hybrid nanovesicles substantially rejuvenated exhausted CD8+ T cells, promoting dendritic cell maturation and depleting regulatory T cells (Tregs). This research highlights the promising potential of cell membrane nanovesicles as an effective platform for delivering multiple immune checkpoints in cancer immunotherapy, offering a novel strategy to enhance therapeutic efficacy.

{"title":"Engineered hybrid cell membrane nanovesicles for potentiated cancer immunotherapy through dual immune checkpoint inhibition.","authors":"Fuxu Yang, Han Xue, Yuxin Fan, Ting Zhang, Ting Wang, Fanlin Gu, Longxue Guan, Lisha Zhou, Xingang Guan, Guofu Chen","doi":"10.1039/d5bm00298b","DOIUrl":"https://doi.org/10.1039/d5bm00298b","url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have demonstrated remarkable success in treating various types of solid tumors; however, only a limited number of patients currently benefit from these therapeutic agents. Developing novel ICIs that elicit systemic and durable antitumor immune responses remains a significant challenge in improving immunotherapy outcomes. In this study, we engineered PD-1/LAG-3 receptors onto cell membrane nanovesicles to simultaneously block two immune checkpoints for the treatment of colorectal cancer. This dual-checkpoint blockade strategy led to significantly more potent tumor growth suppression in mice with MC38 xenografts compared to nanovesicles targeting PD-1 or LAG-3 alone. Notably, the hybrid nanovesicles substantially rejuvenated exhausted CD8<sup>+</sup> T cells, promoting dendritic cell maturation and depleting regulatory T cells (Tregs). This research highlights the promising potential of cell membrane nanovesicles as an effective platform for delivering multiple immune checkpoints in cancer immunotherapy, offering a novel strategy to enhance therapeutic efficacy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyvinyl alcohol/casein hydrogels with oxymatrine eluting ability for cancer-related wound management.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-08 DOI: 10.1039/d5bm00191a
Pedro Rainho, Madalena Salema-Oom, Carlos A Pinto, Jorge A Saraiva, Benilde Saramago, Diana C Silva, Ana Paula Serro

Malignant fungating wounds (MFWs) are cancer-related complications that arise from metastases in advanced cancers. They appear in 5-14% of cancer patients, with higher prevalence in breast (66%) and head and neck (24%) cancers. Novel therapeutic routes for the management of MFWs rely on plant-based treatments, e.g. oxymatrine (OXM), an alkaloid derived from a Chinese plant with anticancer and anti-inflammatory properties. The objective of this work was to assess the potential of polyvinyl alcohol/casein (PVA/CAS) hydrogels to be used as dressings for OXM delivery. CAS can stimulate the immune system, while PVA is one of the most used synthetic polymers in the composition of hydrogels for medical applications. Six different hydrogel formulations were prepared following different procedures: freeze-thawing (FT) and cast drying (CD) for 24 or 48 h, with and without the addition of genipin (GE), a crosslinking agent. The hydrogels were loaded with OXM, and their release behaviour was studied. PVA/CAS-24CD + GE showed the best release profile. After being subjected to sterilisation by high hydrostatic pressure, it was further investigated in terms of physicochemical properties, mechanical characteristics and biocompatibility. Overall, this hydrogel revealed adequate characteristics to be used as a biocompatible medicated dressing for OXM release.

{"title":"Polyvinyl alcohol/casein hydrogels with oxymatrine eluting ability for cancer-related wound management.","authors":"Pedro Rainho, Madalena Salema-Oom, Carlos A Pinto, Jorge A Saraiva, Benilde Saramago, Diana C Silva, Ana Paula Serro","doi":"10.1039/d5bm00191a","DOIUrl":"https://doi.org/10.1039/d5bm00191a","url":null,"abstract":"<p><p>Malignant fungating wounds (MFWs) are cancer-related complications that arise from metastases in advanced cancers. They appear in 5-14% of cancer patients, with higher prevalence in breast (66%) and head and neck (24%) cancers. Novel therapeutic routes for the management of MFWs rely on plant-based treatments, <i>e.g.</i> oxymatrine (OXM), an alkaloid derived from a Chinese plant with anticancer and anti-inflammatory properties. The objective of this work was to assess the potential of polyvinyl alcohol/casein (PVA/CAS) hydrogels to be used as dressings for OXM delivery. CAS can stimulate the immune system, while PVA is one of the most used synthetic polymers in the composition of hydrogels for medical applications. Six different hydrogel formulations were prepared following different procedures: freeze-thawing (FT) and cast drying (CD) for 24 or 48 h, with and without the addition of genipin (GE), a crosslinking agent. The hydrogels were loaded with OXM, and their release behaviour was studied. PVA/CAS-24CD + GE showed the best release profile. After being subjected to sterilisation by high hydrostatic pressure, it was further investigated in terms of physicochemical properties, mechanical characteristics and biocompatibility. Overall, this hydrogel revealed adequate characteristics to be used as a biocompatible medicated dressing for OXM release.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacteria-responsive cytoderm drug delivery systems.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-08 DOI: 10.1039/d5bm00026b
Chenmeng Zhou, Yue Zhang, Bo Tian, Yue Yu, Dongxiao Li, Bingbing Wu, Wenju Chang, Tongguo Shi, Fang Xu, Jinyu Bai, Chao Wang

Signs of bacterial activities have been reported in a variety of disease models. Here, we extracted plant cytoderm ghosts (PCGs) from plant cells, acting as bacteria-responsive drug delivery systems (DDSs) that release drugs specifically in response to the presence or activity of bacteria. Cellulose, which is one of the main components of PCGs, can be degraded in the presence of specialized bacteria that secrete enzymes to convert the cellulose into simpler sugars, thus breaking down the structure of PCGs to release the loaded drugs. In our study, PCGs loaded with ciprofloxacin (PCG@CIP) could effectively inhibit the proliferation and retention of bacteria at the infection site, and improve the local wound microenvironment to accelerate wound repair. In addition, the PCG platform with anticancer drugs could effectively regulate the progression of tumor growth. Therefore, we report a new drug delivery system that responds to the microbiota based on plant cytoderm, providing a new option for drug responsive delivery.

{"title":"Bacteria-responsive cytoderm drug delivery systems.","authors":"Chenmeng Zhou, Yue Zhang, Bo Tian, Yue Yu, Dongxiao Li, Bingbing Wu, Wenju Chang, Tongguo Shi, Fang Xu, Jinyu Bai, Chao Wang","doi":"10.1039/d5bm00026b","DOIUrl":"https://doi.org/10.1039/d5bm00026b","url":null,"abstract":"<p><p>Signs of bacterial activities have been reported in a variety of disease models. Here, we extracted plant cytoderm ghosts (PCGs) from plant cells, acting as bacteria-responsive drug delivery systems (DDSs) that release drugs specifically in response to the presence or activity of bacteria. Cellulose, which is one of the main components of PCGs, can be degraded in the presence of specialized bacteria that secrete enzymes to convert the cellulose into simpler sugars, thus breaking down the structure of PCGs to release the loaded drugs. In our study, PCGs loaded with ciprofloxacin (PCG@CIP) could effectively inhibit the proliferation and retention of bacteria at the infection site, and improve the local wound microenvironment to accelerate wound repair. In addition, the PCG platform with anticancer drugs could effectively regulate the progression of tumor growth. Therefore, we report a new drug delivery system that responds to the microbiota based on plant cytoderm, providing a new option for drug responsive delivery.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in bioink-based 3D printed scaffolds: optimizing biocompatibility and mechanical properties for bone regeneration.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-07 DOI: 10.1039/d4bm01606h
Pawan Kumar, Jitender Sharma, Ravinder Kumar, Jan Najser, Jaroslav Frantik, Anju Manuja, Nagaraju Sunnam, Seepana Praveenkumar

The development of bioink-based 3D-printed scaffolds has revolutionized bone tissue engineering (BTE) by enabling patient-specific and biomimetic constructs for bone regeneration. This review focuses on the biocompatibility and mechanical properties essential for scaffold performance, highlighting advancements in bioink formulations, material combinations, and printing techniques. The key biomaterials, including natural polymers (gelatin, collagen, alginate), synthetic polymers (polycaprolactone, polyethylene glycol), and bioactive ceramics (hydroxyapatite, calcium phosphate), are discussed concerning their osteoconductivity, printability, and structural integrity. Despite significant progress, challenges remain in achieving optimal mechanical strength, degradation rates, and cellular interactions. The review explores emerging strategies such as gene-activated bioinks, nanocomposite reinforcements, and crosslinking techniques to enhance scaffold durability and bioactivity. By synthesizing recent developments, this work provides insights into future directions for bioink-based scaffolds, paving the way for more effective and personalized bone regenerative therapies.

以生物墨水为基础的三维打印支架的开发为骨组织工程(BTE)带来了革命性的变化,实现了患者特异性和生物仿真的骨再生构建。本综述侧重于支架性能所必需的生物相容性和机械性能,重点介绍生物墨水配方、材料组合和打印技术方面的进展。文章讨论了主要的生物材料,包括天然聚合物(明胶、胶原蛋白、海藻酸)、合成聚合物(聚己内酯、聚乙二醇)和生物活性陶瓷(羟基磷灰石、磷酸钙)的骨传导性、可印刷性和结构完整性。尽管取得了重大进展,但在实现最佳机械强度、降解率和细胞相互作用方面仍存在挑战。本综述探讨了基因激活生物墨水、纳米复合加固材料和交联技术等新兴策略,以增强支架的耐久性和生物活性。通过综合最新进展,该研究为基于生物墨水的支架的未来发展方向提供了见解,为更有效、更个性化的骨再生疗法铺平了道路。
{"title":"Advances in bioink-based 3D printed scaffolds: optimizing biocompatibility and mechanical properties for bone regeneration.","authors":"Pawan Kumar, Jitender Sharma, Ravinder Kumar, Jan Najser, Jaroslav Frantik, Anju Manuja, Nagaraju Sunnam, Seepana Praveenkumar","doi":"10.1039/d4bm01606h","DOIUrl":"https://doi.org/10.1039/d4bm01606h","url":null,"abstract":"<p><p>The development of bioink-based 3D-printed scaffolds has revolutionized bone tissue engineering (BTE) by enabling patient-specific and biomimetic constructs for bone regeneration. This review focuses on the biocompatibility and mechanical properties essential for scaffold performance, highlighting advancements in bioink formulations, material combinations, and printing techniques. The key biomaterials, including natural polymers (gelatin, collagen, alginate), synthetic polymers (polycaprolactone, polyethylene glycol), and bioactive ceramics (hydroxyapatite, calcium phosphate), are discussed concerning their osteoconductivity, printability, and structural integrity. Despite significant progress, challenges remain in achieving optimal mechanical strength, degradation rates, and cellular interactions. The review explores emerging strategies such as gene-activated bioinks, nanocomposite reinforcements, and crosslinking techniques to enhance scaffold durability and bioactivity. By synthesizing recent developments, this work provides insights into future directions for bioink-based scaffolds, paving the way for more effective and personalized bone regenerative therapies.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
20 nm nanoparticles trigger calcium influx to endothelial cells via a TRPV4 channel.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-07 DOI: 10.1039/d4bm01691b
Jaspreet Singh Nagi, Amber L Doiron

While increased intracellular calcium (Ca2+) has been identified as a key effect of nanoparticles on endothelial cells, the mechanism has not been fully elucidated or examined under shear stress. Here, we show the effect of several types of 20 nm particles on Ca2+ in the presence of shear stress in human umbilical vein endothelial cells (HUVECs), human coronary artery endothelial cells (HCAECs), and human cardiac microvascular endothelial cells (HMVEC-Cs). Intracellular Ca2+ levels increased by nearly three-fold in these cell types upon exposure to 100 μg mL-1 20 nm Au particles, which was not seen in response to larger or smaller particles. An antagonist to the calcium channel - transient receptor potential vanilloid-type 4 (TRPV4) - drastically reduced the amount of calcium by 9.3-fold in HUVECs exposed to 0.6 Pa shear stress and 100 μg mL-1 20 nm gold particles, a trend upheld in both HCAECs and HMVEC-Cs. Cell alignment in the direction of fluid flow is a well-known phenomenon in endothelial cells, and interestingly, cells in the presence of 20 nm particles with fluid flow had a higher alignment index than cells in the fluid flow alone. When compared with previous works, these results indicated that 20 nm particles may be inducing endothelial permeability by activating the TRPV4 channel in vitro. The potential of nanoparticle delivery technologies hinges on an improved understanding of this effect toward improved delivery with limited toxicity.

虽然细胞内钙(Ca2+)的增加已被确定为纳米颗粒对内皮细胞的主要影响,但其机制尚未完全阐明,也未在剪切应力下进行研究。在这里,我们展示了几种类型的 20 纳米粒子在剪切应力作用下对人脐静脉内皮细胞(HUVECs)、人冠状动脉内皮细胞(HCAECs)和人心脏微血管内皮细胞(HMVEC-Cs)中 Ca2+ 的影响。接触 100 μg mL-1 20 nm 金颗粒后,这些细胞类型的细胞内 Ca2+ 水平增加了近三倍,而对较大或较小颗粒的反应则没有出现这种情况。钙通道拮抗剂--瞬时受体电位类香草素 4 型(TRPV4)--使暴露于 0.6 Pa 剪切应力和 100 μg mL-1 20 nm 金颗粒的 HUVECs 中的钙含量急剧下降了 9.3 倍,这一趋势在 HCAECs 和 HMVEC-Cs 中都得到了保持。细胞顺着流体流动的方向排列是内皮细胞的一种众所周知的现象,有趣的是,在 20 nm 颗粒与流体流动的作用下,细胞的排列指数高于单独在流体流动中的细胞。与之前的研究相比,这些结果表明 20 纳米粒子可能通过激活体外 TRPV4 通道来诱导内皮细胞的通透性。纳米颗粒递送技术的潜力取决于对这一效应的进一步了解,从而改善递送效果并限制毒性。
{"title":"20 nm nanoparticles trigger calcium influx to endothelial cells <i>via</i> a TRPV4 channel.","authors":"Jaspreet Singh Nagi, Amber L Doiron","doi":"10.1039/d4bm01691b","DOIUrl":"https://doi.org/10.1039/d4bm01691b","url":null,"abstract":"<p><p>While increased intracellular calcium (Ca<sup>2+</sup>) has been identified as a key effect of nanoparticles on endothelial cells, the mechanism has not been fully elucidated or examined under shear stress. Here, we show the effect of several types of 20 nm particles on Ca<sup>2+</sup> in the presence of shear stress in human umbilical vein endothelial cells (HUVECs), human coronary artery endothelial cells (HCAECs), and human cardiac microvascular endothelial cells (HMVEC-Cs). Intracellular Ca<sup>2+</sup> levels increased by nearly three-fold in these cell types upon exposure to 100 μg mL<sup>-1</sup> 20 nm Au particles, which was not seen in response to larger or smaller particles. An antagonist to the calcium channel - transient receptor potential vanilloid-type 4 (TRPV4) - drastically reduced the amount of calcium by 9.3-fold in HUVECs exposed to 0.6 Pa shear stress and 100 μg mL<sup>-1</sup> 20 nm gold particles, a trend upheld in both HCAECs and HMVEC-Cs. Cell alignment in the direction of fluid flow is a well-known phenomenon in endothelial cells, and interestingly, cells in the presence of 20 nm particles with fluid flow had a higher alignment index than cells in the fluid flow alone. When compared with previous works, these results indicated that 20 nm particles may be inducing endothelial permeability by activating the TRPV4 channel <i>in vitro</i>. The potential of nanoparticle delivery technologies hinges on an improved understanding of this effect toward improved delivery with limited toxicity.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A light-activated Fe2+ release nanosystem for enhanced chemodynamic/chemo therapy via cascade amplification of ROS generation.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-07 DOI: 10.1039/d4bm01425a
Wei Guo, Min Wang, Xisha Chen, Mei Wang, Yingcai Meng

Ferrous iron (Fe2+)-based chemodynamic therapy (CDT) shows great potential for improving chemotherapeutic efficacy and reducing side effects. However, spontaneous oxidation and biological matrixes can influence the catalytic reactive oxygen species (ROS) generation of Fe2+, thereby limiting the efficacy of CDT. Herein, we reported a simple and convenient method to construct hyaluronic acid (HA)-stabilized iron/zinc oxide nanoparticles (IZ@H NPs), which showed intrinsic peroxidase (POD)-like activity and excellent light-activated Fe2+ release performance. Moreover, we demonstrate that catalytic ROS generation follows a cascade amplification manner due to the light-activated release of Fe2+ from IZ@H NPs, leading to formation of iron-DNA complexes (IDCs). After loading doxorubicin (DOX), the nanosystem (termed IZD@H NPs) exhibits tumor cell targeting, robust ROS generation and high cytotoxicity, significantly suppressing tumor growth in xenograft mouse models while maintaining good biosafety. This work gives novel insight into amplifying Fe2+-mediated catalytic ROS generation and presents a new strategy for in vivo Fe2+ delivery to enhance chemodynamic/chemotherapy.

基于亚铁(Fe2+)的化学动力学疗法(CDT)在提高化疗疗效和减少副作用方面显示出巨大的潜力。然而,自发氧化和生物基质会影响 Fe2+ 催化活性氧(ROS)的生成,从而限制 CDT 的疗效。在此,我们报道了一种简单方便的方法来构建透明质酸(HA)稳定的铁/氧化锌纳米粒子(IZ@H NPs),该纳米粒子显示出类似过氧化物酶(POD)的内在活性和优异的光活化Fe2+释放性能。此外,我们还证明,由于 IZ@H NPs 光催化释放 Fe2+,催化 ROS 生成以级联放大的方式进行,从而形成铁-DNA 复合物(IDCs)。负载多柔比星(DOX)后,纳米系统(称为 IZD@H NPs)表现出肿瘤细胞靶向性、强 ROS 生成和高细胞毒性,在异种移植小鼠模型中显著抑制肿瘤生长,同时保持良好的生物安全性。这项工作为放大 Fe2+ 介导的催化 ROS 生成提供了新的见解,并提出了一种体内 Fe2+ 递送以增强化学动力学/化学疗法的新策略。
{"title":"A light-activated Fe<sup>2+</sup> release nanosystem for enhanced chemodynamic/chemo therapy <i>via</i> cascade amplification of ROS generation.","authors":"Wei Guo, Min Wang, Xisha Chen, Mei Wang, Yingcai Meng","doi":"10.1039/d4bm01425a","DOIUrl":"https://doi.org/10.1039/d4bm01425a","url":null,"abstract":"<p><p>Ferrous iron (Fe<sup>2+</sup>)-based chemodynamic therapy (CDT) shows great potential for improving chemotherapeutic efficacy and reducing side effects. However, spontaneous oxidation and biological matrixes can influence the catalytic reactive oxygen species (ROS) generation of Fe<sup>2+</sup>, thereby limiting the efficacy of CDT. Herein, we reported a simple and convenient method to construct hyaluronic acid (HA)-stabilized iron/zinc oxide nanoparticles (IZ@H NPs), which showed intrinsic peroxidase (POD)-like activity and excellent light-activated Fe<sup>2+</sup> release performance. Moreover, we demonstrate that catalytic ROS generation follows a cascade amplification manner due to the light-activated release of Fe<sup>2+</sup> from IZ@H NPs, leading to formation of iron-DNA complexes (IDCs). After loading doxorubicin (DOX), the nanosystem (termed IZD@H NPs) exhibits tumor cell targeting, robust ROS generation and high cytotoxicity, significantly suppressing tumor growth in xenograft mouse models while maintaining good biosafety. This work gives novel insight into amplifying Fe<sup>2+</sup>-mediated catalytic ROS generation and presents a new strategy for <i>in vivo</i> Fe<sup>2+</sup> delivery to enhance chemodynamic/chemotherapy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro/nanomotors for active inflammatory disease therapy.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-04 DOI: 10.1039/d5bm00052a
Xue Yang, Lishan Zhang, Hui Ran, Fei Peng, Yingfeng Tu

Inflammation is a carefully orchestrated response of the immune system to repair injured tissues and clear various damage factors. However, dysregulated inflammation can eventually contribute to the development and progression of various inflammatory diseases. Although anti-inflammatory drugs have demonstrated certain therapeutic efficacy in clinical settings, significant limitations still persist, highlighting the necessity for the development of improved approaches to address complex inflammatory conditions. Micro/nanomotors (MNMs) have shown significant promise for applications in the biomedical field due to their micro/nano-scale sizes and autonomous movement. Unlike traditional nanoparticles, which exhibit passive diffusion in biological fluids, MNMs can convert external energy into a driving force for self-propulsion. This capability not only enhances the tissue penetration depth and retention rates but also facilitates interaction with inflammatory lesions. Recent efforts have suggested that MNMs for inflammatory disease therapy could provide an efficient therapeutic effect. Herein, we mainly introduce the recent advances in inflammatory disease therapy based on MNMs. We conclude by discussing both the obstacles and potential opportunities for MNMs innovations in addressing inflammation.

炎症是免疫系统为修复受伤组织和清除各种损伤因子而精心策划的一种反应。然而,失调的炎症最终会导致各种炎症性疾病的发生和发展。虽然抗炎药物在临床上已显示出一定的疗效,但仍然存在很大的局限性,这突出表明有必要开发出更好的方法来解决复杂的炎症问题。微型/纳米马达(MNMs)因其微型/纳米级尺寸和自主运动特性,在生物医学领域的应用前景十分广阔。与在生物液体中被动扩散的传统纳米粒子不同,MNMs 可以将外部能量转化为自我推进的驱动力。这种能力不仅能提高组织渗透深度和保留率,还能促进与炎症病灶的相互作用。近来的研究表明,MNMs 用于炎症性疾病治疗可提供高效的治疗效果。在此,我们主要介绍基于 MNMs 的炎症性疾病治疗的最新进展。最后,我们将讨论 MNMs 在治疗炎症方面的创新所面临的障碍和潜在机遇。
{"title":"Micro/nanomotors for active inflammatory disease therapy.","authors":"Xue Yang, Lishan Zhang, Hui Ran, Fei Peng, Yingfeng Tu","doi":"10.1039/d5bm00052a","DOIUrl":"https://doi.org/10.1039/d5bm00052a","url":null,"abstract":"<p><p>Inflammation is a carefully orchestrated response of the immune system to repair injured tissues and clear various damage factors. However, dysregulated inflammation can eventually contribute to the development and progression of various inflammatory diseases. Although anti-inflammatory drugs have demonstrated certain therapeutic efficacy in clinical settings, significant limitations still persist, highlighting the necessity for the development of improved approaches to address complex inflammatory conditions. Micro/nanomotors (MNMs) have shown significant promise for applications in the biomedical field due to their micro/nano-scale sizes and autonomous movement. Unlike traditional nanoparticles, which exhibit passive diffusion in biological fluids, MNMs can convert external energy into a driving force for self-propulsion. This capability not only enhances the tissue penetration depth and retention rates but also facilitates interaction with inflammatory lesions. Recent efforts have suggested that MNMs for inflammatory disease therapy could provide an efficient therapeutic effect. Herein, we mainly introduce the recent advances in inflammatory disease therapy based on MNMs. We conclude by discussing both the obstacles and potential opportunities for MNMs innovations in addressing inflammation.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OBOC screening of high activity and low-toxic polymyxin analogs against MCR-1 resistant strains.
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2025-04-03 DOI: 10.1039/d5bm00362h
Wenhong Zheng, Xin Wang, Hao Lian, Pengfei Zou, Tongyi Sun, Hao Wang, Li-Li Li

We performed inverse synthesis to create 1152 structural analogs of polymyxin B with modified hydrophilicity and charge properties using OBOC technology. This led to the identification of two promising candidates that provided insights into structure-activity relationships. These compounds maintained high antibacterial activity while expanding the safety window 4-16 times.

{"title":"OBOC screening of high activity and low-toxic polymyxin analogs against MCR-1 resistant strains.","authors":"Wenhong Zheng, Xin Wang, Hao Lian, Pengfei Zou, Tongyi Sun, Hao Wang, Li-Li Li","doi":"10.1039/d5bm00362h","DOIUrl":"https://doi.org/10.1039/d5bm00362h","url":null,"abstract":"<p><p>We performed inverse synthesis to create 1152 structural analogs of polymyxin B with modified hydrophilicity and charge properties using OBOC technology. This led to the identification of two promising candidates that provided insights into structure-activity relationships. These compounds maintained high antibacterial activity while expanding the safety window 4-16 times.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomaterials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1