首页 > 最新文献

Faraday Discussions最新文献

英文 中文
Scanning electrochemical probe microscopy: general discussion. 扫描电化学探针显微镜:一般讨论。
IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-01-27 DOI: 10.1039/d4fd90069c
Paolo Actis, Lane A Baker, Giada Caniglia, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, Lachlan F Gaudin, J Justin Gooding, Jingshu Hui, Dechen Jiang, Frédéric Kanoufi, John J Kasianowicz, Moonjoo Kim, Christine Kranz, Christian Kuttner, Yunchao Li, Liang Liu, Si-Min Lu, Wenjun Luo, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Yasufumi Takahashi, Juan Tang, Dengchao Wang, Liang Wang, Wei Wang, Yunong Wang, Ruo-Chen Xie, Yuelin Xie, Yi-Lun Ying, Guohui Zhang, Lingjie Zhang, Ziwen Zhao, Yige Zhou
{"title":"Scanning electrochemical probe microscopy: general discussion.","authors":"Paolo Actis, Lane A Baker, Giada Caniglia, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, Lachlan F Gaudin, J Justin Gooding, Jingshu Hui, Dechen Jiang, Frédéric Kanoufi, John J Kasianowicz, Moonjoo Kim, Christine Kranz, Christian Kuttner, Yunchao Li, Liang Liu, Si-Min Lu, Wenjun Luo, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Yasufumi Takahashi, Juan Tang, Dengchao Wang, Liang Wang, Wei Wang, Yunong Wang, Ruo-Chen Xie, Yuelin Xie, Yi-Lun Ying, Guohui Zhang, Lingjie Zhang, Ziwen Zhao, Yige Zhou","doi":"10.1039/d4fd90069c","DOIUrl":"https://doi.org/10.1039/d4fd90069c","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectroelectrochemistry and light active process at nanointerface: general discussion.
IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-01-27 DOI: 10.1039/d4fd90070g
Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, Caleb M Hill, Kaoru Hiramoto, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Christian Kuttner, Shuang-Yan Lang, Fei Li, Liang Liu, Jin Lu, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Yasufumi Takahashi, Wei Wang, Fan Xia, Guohui Zhang, Ziwen Zhao, Yige Zhou
{"title":"Spectroelectrochemistry and light active process at nanointerface: general discussion.","authors":"Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, Caleb M Hill, Kaoru Hiramoto, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Christian Kuttner, Shuang-Yan Lang, Fei Li, Liang Liu, Jin Lu, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Yasufumi Takahashi, Wei Wang, Fan Xia, Guohui Zhang, Ziwen Zhao, Yige Zhou","doi":"10.1039/d4fd90070g","DOIUrl":"https://doi.org/10.1039/d4fd90070g","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systems nanoelectrochemistry from single entity to ensemble: general discussion.
IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-01-24 DOI: 10.1039/d4fd90068e
Paolo Actis, Koichi Aoki, Lane A Baker, Giada Caniglia, Ning Dang, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Kaoru Hiramoto, Dechen Jiang, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Shuang-Yan Lang, Fei Li, Haoran Li, Liang Liu, Yi-Tao Long, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Zuzanna S Siwy, Yasufumi Takahashi, Juan Tang, Haiyan Wang, Jun-Gang Wang, Kang Wang, Liang Wang, Yunong Wang, Fan Xia, Ruo-Chen Xie, Yi-Lun Ying, Guohui Zhang, Ziwen Zhao
{"title":"Systems nanoelectrochemistry from single entity to ensemble: general discussion.","authors":"Paolo Actis, Koichi Aoki, Lane A Baker, Giada Caniglia, Ning Dang, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Kaoru Hiramoto, Dechen Jiang, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Shuang-Yan Lang, Fei Li, Haoran Li, Liang Liu, Yi-Tao Long, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Zuzanna S Siwy, Yasufumi Takahashi, Juan Tang, Haiyan Wang, Jun-Gang Wang, Kang Wang, Liang Wang, Yunong Wang, Fan Xia, Ruo-Chen Xie, Yi-Lun Ying, Guohui Zhang, Ziwen Zhao","doi":"10.1039/d4fd90068e","DOIUrl":"https://doi.org/10.1039/d4fd90068e","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confined nanopore electrochemistry: general discussion.
IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-01-23 DOI: 10.1039/d4fd90067g
Paolo Actis, Koichi Aoki, Lane A Baker, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Jun Huang, Frédéric Kanoufi, John J Kasianowicz, Moonjoo Kim, Christine Kranz, Christian Kuttner, Fei Li, Liang Liu, Wei Liu, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Yasufumi Takahashi, Shuo Tan, Juan Tang, Haiyan Wang, Kang Wang, Liang Wang, Weihua Wang, Fan Xia, Tianyi Xiong, Yi-Lun Ying, Yueming Zhai, Ziwen Zhao, Yige Zhou
{"title":"Confined nanopore electrochemistry: general discussion.","authors":"Paolo Actis, Koichi Aoki, Lane A Baker, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Jun Huang, Frédéric Kanoufi, John J Kasianowicz, Moonjoo Kim, Christine Kranz, Christian Kuttner, Fei Li, Liang Liu, Wei Liu, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Yasufumi Takahashi, Shuo Tan, Juan Tang, Haiyan Wang, Kang Wang, Liang Wang, Weihua Wang, Fan Xia, Tianyi Xiong, Yi-Lun Ying, Yueming Zhai, Ziwen Zhao, Yige Zhou","doi":"10.1039/d4fd90067g","DOIUrl":"https://doi.org/10.1039/d4fd90067g","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New horizons in nanoelectrochemistry: concluding remarks. 纳米电化学的新视野:总结。
IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-01-16 DOI: 10.1039/d4fd00183d
Andrew G Ewing

The aim of this paper is to overview the meeting on New horizons in nanoelectrochemistry held at Nanjing University in China in October 2024 and to give some perspective to the work presented. This paper is based on my summary talk and breaks down the subjects in the following areas of nanoelectrochemistry presented at the meeting: nanowires, nanonets, and nanoarrays; nanopores; nanopipettes; spectroelectrochemistry, scanning ion-conductance microscopy and light-active processes at nanointerfaces; scanning electrochemical microscopy and scanning electrochemical cell microscopy; and nanosensors. I end with some discussion of online meetings and where the field might go including artificial intelligence and by asking AI to define the challenges and future of nanoelectrochemistry.

本文旨在概述2024年10月在南京大学举行的纳米电化学新视野会议,并对所提出的工作提出一些展望。这篇论文是基于我的总结演讲,并分解了在会议上提出的纳米电化学的以下领域的主题:纳米线,纳米网和纳米阵列;纳米孔;nanopipettes;光谱电化学、扫描离子电导显微镜和纳米界面光活性过程;扫描电化学显微镜和扫描电化学细胞显微镜;和纳米传感器。最后,我讨论了一些在线会议,以及该领域的发展方向,包括人工智能,并要求人工智能定义纳米电化学的挑战和未来。
{"title":"New horizons in nanoelectrochemistry: concluding remarks.","authors":"Andrew G Ewing","doi":"10.1039/d4fd00183d","DOIUrl":"10.1039/d4fd00183d","url":null,"abstract":"<p><p>The aim of this paper is to overview the meeting on New horizons in nanoelectrochemistry held at Nanjing University in China in October 2024 and to give some perspective to the work presented. This paper is based on my summary talk and breaks down the subjects in the following areas of nanoelectrochemistry presented at the meeting: nanowires, nanonets, and nanoarrays; nanopores; nanopipettes; spectroelectrochemistry, scanning ion-conductance microscopy and light-active processes at nanointerfaces; scanning electrochemical microscopy and scanning electrochemical cell microscopy; and nanosensors. I end with some discussion of online meetings and where the field might go including artificial intelligence and by asking AI to define the challenges and future of nanoelectrochemistry.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spiers Memorial Lecture: New horizons in nanoelectrochemistry. 斯皮尔斯纪念讲座:纳米电化学的新视野。
IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-01 DOI: 10.1039/d4fd00159a
Oluwasegun Wahab, Lane A Baker

This introductory lecture prefaces the 2024 New Horizons in Nanoelectrochemistry Faraday Discussion. A broad view of the previous Discussions related to nanoelectrochemistry is taken. Big ideas or concepts discussed at these previous meetings are identified, along with specific examples in each area. Closing comments aimed at a high level and related to where we are today and what is needed to continue to drive nanoelectrochemistry towards the horizon are considered.

本介绍性讲座是 2024 年纳米电化学新视野法拉第讨论会的前奏。本讲座从广义上介绍了以往与纳米电化学有关的讨论。确定以往会议讨论的主要观点或概念,以及每个领域的具体实例。最后,针对我们今天所处的位置以及继续推动纳米电化学走向地平线所需的条件,提出了高水平的总结性意见。
{"title":"Spiers Memorial Lecture: New horizons in nanoelectrochemistry.","authors":"Oluwasegun Wahab, Lane A Baker","doi":"10.1039/d4fd00159a","DOIUrl":"10.1039/d4fd00159a","url":null,"abstract":"<p><p>This introductory lecture prefaces the 2024 New Horizons in Nanoelectrochemistry <i>Faraday Discussion</i>. A broad view of the previous Discussions related to nanoelectrochemistry is taken. Big ideas or concepts discussed at these previous meetings are identified, along with specific examples in each area. Closing comments aimed at a high level and related to where we are today and what is needed to continue to drive nanoelectrochemistry towards the horizon are considered.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Transmembrane Current through Modulation of Biomimetic Lipid Membrane Composition 通过调节仿生脂质膜成分调节跨膜电流
IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1039/d4fd00149d
Zhiwei Shang, Jing Zhao, Mengyu Yang, Yuling Xiao, Wenjing Chu, Yilin Cai, Xiaoqing Yi, Meihua Lin, Fan Xia
Ion transport through biological channels is influenced not only by the structural properties of the channels themselves but also by the composition of the phospholipid membrane, which acts as a scaffold for these nanochannels. Drawing inspiration from how lipid membrane composition modulates ion currents, as seen in the activation of the K+ channel in Streptomyces A (KcsA) by anionic lipids, we propose a biomimetic nanochannel system that integrates DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By modifying the length of the multibranched DNA nanowires generated through the hybridization chain reactions (HCR) and varying the concentration of the linker strands that integrate these DNA nanowire structures with the GO membrane, the composition of the membrane can be effectively adjusted, consequently impacting ion transport. This method provides a strategy for developing devices with highly efficient and tunable ion transport, suitable for applications in mass transport, environmental protection, biomimetic channels, and biosensors.
离子通过生物通道的传输不仅受通道本身结构特性的影响,还受磷脂膜成分的影响,磷脂膜是这些纳米通道的支架。从阴离子脂质激活链霉菌 A 的 K+ 通道(KcsA)的过程中,我们从脂质膜成分如何调节离子电流中汲取了灵感,提出了一种将 DNA 纳米技术与二维氧化石墨烯(GO)纳米片相结合的仿生纳米通道系统。通过改变杂交链反应(HCR)产生的多分支 DNA 纳米线的长度,以及改变将这些 DNA 纳米线结构与 GO 膜结合在一起的连接链的浓度,可以有效调整膜的组成,从而影响离子传输。这种方法为开发具有高效和可调离子传输功能的设备提供了一种策略,适用于质量传输、环境保护、仿生通道和生物传感器等应用领域。
{"title":"Regulation of Transmembrane Current through Modulation of Biomimetic Lipid Membrane Composition","authors":"Zhiwei Shang, Jing Zhao, Mengyu Yang, Yuling Xiao, Wenjing Chu, Yilin Cai, Xiaoqing Yi, Meihua Lin, Fan Xia","doi":"10.1039/d4fd00149d","DOIUrl":"https://doi.org/10.1039/d4fd00149d","url":null,"abstract":"Ion transport through biological channels is influenced not only by the structural properties of the channels themselves but also by the composition of the phospholipid membrane, which acts as a scaffold for these nanochannels. Drawing inspiration from how lipid membrane composition modulates ion currents, as seen in the activation of the K+ channel in Streptomyces A (KcsA) by anionic lipids, we propose a biomimetic nanochannel system that integrates DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By modifying the length of the multibranched DNA nanowires generated through the hybridization chain reactions (HCR) and varying the concentration of the linker strands that integrate these DNA nanowire structures with the GO membrane, the composition of the membrane can be effectively adjusted, consequently impacting ion transport. This method provides a strategy for developing devices with highly efficient and tunable ion transport, suitable for applications in mass transport, environmental protection, biomimetic channels, and biosensors.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge induced deformation of scanning electrolyte before contact 接触前扫描电解质的电荷诱导变形
IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-20 DOI: 10.1039/d4fd00147h
Liang Liu
The recent developments of scanning electrochemical probe techniques focus on the strategy of scanning electrolyte. For example, scanning electrochemical cell microscopy (SECCM) is based on holding the electrolyte in a glass capillary, while scanning gel electrochemical microscopy (SGECM) immobilizes the gel electrolyte on micro-disk electrodes or etched metal wires. In both SECCM and SGECM, the first and essential step is to approach the electrolyte probe to be in contact with the sample, which is very often achieved by current feedback with a constant applied potential between the probe and the sample. This work attempts to theoretically analyse the deformation of electrolyte during this approaching process. For liquid electrolyte in SECCM, surface tension is considered to counterbalance the gravity and electrostatic force in 2D cylindrical coordinates with axial symmetry. The deformation at equilibrium is solved under certain conditions. For gel electrolyte, a viscoelastic gel is analysed with simplified 1D geometry. Both equilibrium and dynamic approaching are considered. The results suggest that for both liquid and gel electrolytes, critical conditions exist for breaking the equilibrium. When applied potential is higher or the distance is lower than the threshold, the force will not equilibrate and the electrolyte will deform until contact. The critical condition depends on the properties (surface tension for liquid, elastic and viscous modulus for gel) and geometry (radius of capillary for liquid, thickness for gel) of electrolyte. Prospects of further extending the work closer to real experimental scenarios, especially SGECM, are also discussed.
扫描电化学探针技术的最新发展主要集中在扫描电解质的策略上。例如,扫描电化学电池显微镜(SECCM)是将电解质固定在玻璃毛细管中,而扫描凝胶电化学显微镜(SGECM)是将凝胶电解质固定在微盘电极或蚀刻金属丝上。扫描凝胶电化学显微镜和扫描凝胶电化学显微镜的第一步都是使电解质探针与样品接触,这通常是通过探针和样品之间的恒定电位电流反馈来实现的。这项工作试图从理论上分析电解质在接近过程中的变形。对于 SECCM 中的液态电解质,在轴对称的二维圆柱坐标中,考虑了表面张力来抵消重力和静电力。平衡时的变形在一定条件下求解。对于凝胶电解质,采用简化的一维几何形状分析粘弹性凝胶。同时考虑了平衡和动态两种方法。结果表明,对于液体和凝胶电解质,都存在打破平衡的临界条件。当外加电势高于临界值或距离小于临界值时,力将不会平衡,电解质将变形直至接触。临界条件取决于电解质的特性(液体的表面张力,凝胶的弹性和粘性模量)和几何形状(液体的毛细管半径,凝胶的厚度)。此外,还讨论了进一步扩展这项工作的前景,使其更接近实际实验场景,特别是 SGECM。
{"title":"Charge induced deformation of scanning electrolyte before contact","authors":"Liang Liu","doi":"10.1039/d4fd00147h","DOIUrl":"https://doi.org/10.1039/d4fd00147h","url":null,"abstract":"The recent developments of scanning electrochemical probe techniques focus on the strategy of scanning electrolyte. For example, scanning electrochemical cell microscopy (SECCM) is based on holding the electrolyte in a glass capillary, while scanning gel electrochemical microscopy (SGECM) immobilizes the gel electrolyte on micro-disk electrodes or etched metal wires. In both SECCM and SGECM, the first and essential step is to approach the electrolyte probe to be in contact with the sample, which is very often achieved by current feedback with a constant applied potential between the probe and the sample. This work attempts to theoretically analyse the deformation of electrolyte during this approaching process. For liquid electrolyte in SECCM, surface tension is considered to counterbalance the gravity and electrostatic force in 2D cylindrical coordinates with axial symmetry. The deformation at equilibrium is solved under certain conditions. For gel electrolyte, a viscoelastic gel is analysed with simplified 1D geometry. Both equilibrium and dynamic approaching are considered. The results suggest that for both liquid and gel electrolytes, critical conditions exist for breaking the equilibrium. When applied potential is higher or the distance is lower than the threshold, the force will not equilibrate and the electrolyte will deform until contact. The critical condition depends on the properties (surface tension for liquid, elastic and viscous modulus for gel) and geometry (radius of capillary for liquid, thickness for gel) of electrolyte. Prospects of further extending the work closer to real experimental scenarios, especially SGECM, are also discussed.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"17 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nafion Coated Nanopore Electrode for Improving Electrochemical Aptamer-Based Biosensing Nafion 涂层纳米孔电极用于改进基于电化学色聚体的生物传感
IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-14 DOI: 10.1039/d4fd00144c
Grayson Huldin, Junming Huang, Julius Reitemeier, Kaiyu Fu
The transition to a personalized point-of-care model in medicine will fundamentally change the way medicine is practiced, leading to better patient care. Electrochemical biosensors based on structure-switching aptamers can contribute to this medical revolution due to the feasibility and convenience of selecting aptamers for specific targets. Recent studies have reported that nanostructured electrodes can enhance the signals of aptamer-based biosensors. However, miniaturized systems and body fluid environments pose challenges such as signal-to-noise ratio reduction and biofouling. To address these issues, researchers have proposed various electrode coating materials, including zwitterionic materials, biocompatible polymers, and hybrid membranes. Nafion, a commonly used ion exchange membrane, is known for its excellent permselectivity and anti-biofouling properties, making it a suitable choice for biosensor systems. However, the performance and mechanism of Nafion-coated aptamer-based biosensor systems have not been thoroughly studied. In this work, we present a Nafion-coated gold nanoporous electrode, which excludes Nafion from the nanoporous structures and allows the aptamers immobilized inside the nanopores to freely detect chosen targets. The nanopore electrode is formed by a sputtering and dealloying process, resulting in a pore size in tens of nanometers. The biosensor is optimized by adjusting the electrochemical measurement parameters, aptamer density, Nafion thickness, and nanopore size. Furthermore, we propose an explanation for the unusual signaling behavior of the aptamers confined within the nanoporous structures. This work provides a generalizable platform to investigate membrane-coated aptamer-based biosensors.
医学向个性化护理点模式的转变将从根本上改变医学的实践方式,从而带来更好的病人护理。基于结构转换适配体的电化学生物传感器可以为这一医学革命做出贡献,因为针对特定目标选择适配体既可行又方便。最近有研究报告称,纳米结构电极可以增强基于适配体的生物传感器的信号。然而,微型化系统和体液环境带来了信噪比降低和生物污染等挑战。为了解决这些问题,研究人员提出了各种电极涂层材料,包括齐聚物材料、生物相容性聚合物和混合膜。Nafion 是一种常用的离子交换膜,以其出色的过选择性和抗生物污染性能而著称,因此适合用于生物传感器系统。然而,人们尚未对 Nafion 涂层适配体生物传感器系统的性能和机理进行深入研究。在这项工作中,我们提出了一种 Nafion 涂层金纳米多孔电极,它将 Nafion 从纳米多孔结构中排除,使固定在纳米孔内的适配体能够自由地检测所选目标。纳米孔电极是通过溅射和脱合金工艺形成的,孔径为几十纳米。通过调整电化学测量参数、载体密度、Nafion 厚度和纳米孔径,对生物传感器进行了优化。此外,我们还对封闭在纳米孔结构中的适配体的异常信号行为提出了解释。这项工作为研究基于膜包覆适配体的生物传感器提供了一个可推广的平台。
{"title":"Nafion Coated Nanopore Electrode for Improving Electrochemical Aptamer-Based Biosensing","authors":"Grayson Huldin, Junming Huang, Julius Reitemeier, Kaiyu Fu","doi":"10.1039/d4fd00144c","DOIUrl":"https://doi.org/10.1039/d4fd00144c","url":null,"abstract":"The transition to a personalized point-of-care model in medicine will fundamentally change the way medicine is practiced, leading to better patient care. Electrochemical biosensors based on structure-switching aptamers can contribute to this medical revolution due to the feasibility and convenience of selecting aptamers for specific targets. Recent studies have reported that nanostructured electrodes can enhance the signals of aptamer-based biosensors. However, miniaturized systems and body fluid environments pose challenges such as signal-to-noise ratio reduction and biofouling. To address these issues, researchers have proposed various electrode coating materials, including zwitterionic materials, biocompatible polymers, and hybrid membranes. Nafion, a commonly used ion exchange membrane, is known for its excellent permselectivity and anti-biofouling properties, making it a suitable choice for biosensor systems. However, the performance and mechanism of Nafion-coated aptamer-based biosensor systems have not been thoroughly studied. In this work, we present a Nafion-coated gold nanoporous electrode, which excludes Nafion from the nanoporous structures and allows the aptamers immobilized inside the nanopores to freely detect chosen targets. The nanopore electrode is formed by a sputtering and dealloying process, resulting in a pore size in tens of nanometers. The biosensor is optimized by adjusting the electrochemical measurement parameters, aptamer density, Nafion thickness, and nanopore size. Furthermore, we propose an explanation for the unusual signaling behavior of the aptamers confined within the nanoporous structures. This work provides a generalizable platform to investigate membrane-coated aptamer-based biosensors.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"1 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion Concentration Polarization Causes a Nearly Pore-Length-Independent Conductance of Nanopores 离子浓度极化导致纳米孔隙的电导率几乎与孔隙长度无关
IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-08 DOI: 10.1039/d4fd00148f
DaVante Cain, Ethan Cao, Ivan Vlassiouk, Tilman E Schäffer, Zuzanna Siwy
There has been a great amount of interest in nanopores as the basis for sensors and templates for preparation of biomimetic channels as well as model systems to understand transport properties at the nanoscale. The presence of surface charges on the pore walls has been shown to induce ion selectivity as well as enhance ionic conductance compared to uncharged pores. Here, using three-dimensional continuum modeling, we examine the role of length of charged nanopores as well as applied voltage for controlling ion selectivity and ionic conductance of single nanopores and small nanopore arrays. First, we present conditions where the ion current and ion selectivity of nanopores with homogeneous surface charges remain unchanged even if the pore length decreases by a factor of 6. This length-independent conductance is explained through the effect of ion concentration polarization (ICP) that modifies local ionic concentrations not only at the pore entrances but also in the pore in a voltage-dependent manner. We describe how voltage controls ion selectivity of nanopores with different lengths and present conditions when charged nanopores conduct less current than uncharged pores of the same geometrical characteristics. The manuscript provides different measures of the extent of the depletion zone induced by ICP in single pores and nanopore arrays including systems with ionic diodes. The modeling shown here will help design selective nanopores for a variety of applications where single nanopores and nanopore arrays are used.
纳米孔作为传感器的基础、制备仿生物通道的模板以及了解纳米尺度传输特性的模型系统,一直备受关注。与不带电的孔相比,孔壁表面电荷的存在已被证明可诱导离子选择性并增强离子传导性。在此,我们利用三维连续建模研究了带电纳米孔的长度以及外加电压在控制单个纳米孔和小型纳米孔阵列的离子选择性和离子传导性方面的作用。首先,我们介绍了具有均匀表面电荷的纳米孔的离子电流和离子选择性保持不变的条件,即使孔的长度减少了 6 倍。离子浓度极化(ICP)不仅改变了孔入口处的局部离子浓度,还以电压依赖的方式改变了孔内的离子浓度,从而解释了这种与长度无关的传导性。我们描述了电压如何控制不同长度纳米孔的离子选择性,并介绍了带电纳米孔比相同几何特性的不带电孔传导更少电流的条件。手稿对单孔和纳米孔阵列(包括带有离子二极管的系统)中由 ICP 引起的耗竭区范围提供了不同的测量方法。这里展示的模型将有助于设计选择性纳米孔,用于单个纳米孔和纳米孔阵列的各种应用。
{"title":"Ion Concentration Polarization Causes a Nearly Pore-Length-Independent Conductance of Nanopores","authors":"DaVante Cain, Ethan Cao, Ivan Vlassiouk, Tilman E Schäffer, Zuzanna Siwy","doi":"10.1039/d4fd00148f","DOIUrl":"https://doi.org/10.1039/d4fd00148f","url":null,"abstract":"There has been a great amount of interest in nanopores as the basis for sensors and templates for preparation of biomimetic channels as well as model systems to understand transport properties at the nanoscale. The presence of surface charges on the pore walls has been shown to induce ion selectivity as well as enhance ionic conductance compared to uncharged pores. Here, using three-dimensional continuum modeling, we examine the role of length of charged nanopores as well as applied voltage for controlling ion selectivity and ionic conductance of single nanopores and small nanopore arrays. First, we present conditions where the ion current and ion selectivity of nanopores with homogeneous surface charges remain unchanged even if the pore length decreases by a factor of 6. This length-independent conductance is explained through the effect of ion concentration polarization (ICP) that modifies local ionic concentrations not only at the pore entrances but also in the pore in a voltage-dependent manner. We describe how voltage controls ion selectivity of nanopores with different lengths and present conditions when charged nanopores conduct less current than uncharged pores of the same geometrical characteristics. The manuscript provides different measures of the extent of the depletion zone induced by ICP in single pores and nanopore arrays including systems with ionic diodes. The modeling shown here will help design selective nanopores for a variety of applications where single nanopores and nanopore arrays are used.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"8 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faraday Discussions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1