Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, Caleb M Hill, Kaoru Hiramoto, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Christian Kuttner, Shuang-Yan Lang, Fei Li, Liang Liu, Jin Lu, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Yasufumi Takahashi, Wei Wang, Fan Xia, Guohui Zhang, Ziwen Zhao, Yige Zhou
{"title":"Spectroelectrochemistry and light active process at nanointerface: general discussion.","authors":"Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, Caleb M Hill, Kaoru Hiramoto, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Christian Kuttner, Shuang-Yan Lang, Fei Li, Liang Liu, Jin Lu, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Yasufumi Takahashi, Wei Wang, Fan Xia, Guohui Zhang, Ziwen Zhao, Yige Zhou","doi":"10.1039/d4fd90070g","DOIUrl":"https://doi.org/10.1039/d4fd90070g","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paolo Actis, Koichi Aoki, Lane A Baker, Giada Caniglia, Ning Dang, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Kaoru Hiramoto, Dechen Jiang, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Shuang-Yan Lang, Fei Li, Haoran Li, Liang Liu, Yi-Tao Long, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Zuzanna S Siwy, Yasufumi Takahashi, Juan Tang, Haiyan Wang, Jun-Gang Wang, Kang Wang, Liang Wang, Yunong Wang, Fan Xia, Ruo-Chen Xie, Yi-Lun Ying, Guohui Zhang, Ziwen Zhao
{"title":"Systems nanoelectrochemistry from single entity to ensemble: general discussion.","authors":"Paolo Actis, Koichi Aoki, Lane A Baker, Giada Caniglia, Ning Dang, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Kaoru Hiramoto, Dechen Jiang, Frédéric Kanoufi, John J Kasianowicz, Christine Kranz, Shuang-Yan Lang, Fei Li, Haoran Li, Liang Liu, Yi-Tao Long, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Mei Shen, Zuzanna S Siwy, Yasufumi Takahashi, Juan Tang, Haiyan Wang, Jun-Gang Wang, Kang Wang, Liang Wang, Yunong Wang, Fan Xia, Ruo-Chen Xie, Yi-Lun Ying, Guohui Zhang, Ziwen Zhao","doi":"10.1039/d4fd90068e","DOIUrl":"https://doi.org/10.1039/d4fd90068e","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paolo Actis, Koichi Aoki, Lane A Baker, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Jun Huang, Frédéric Kanoufi, John J Kasianowicz, Moonjoo Kim, Christine Kranz, Christian Kuttner, Fei Li, Liang Liu, Wei Liu, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Yasufumi Takahashi, Shuo Tan, Juan Tang, Haiyan Wang, Kang Wang, Liang Wang, Weihua Wang, Fan Xia, Tianyi Xiong, Yi-Lun Ying, Yueming Zhai, Ziwen Zhao, Yige Zhou
{"title":"Confined nanopore electrochemistry: general discussion.","authors":"Paolo Actis, Koichi Aoki, Lane A Baker, Zhifeng Ding, Andrew G Ewing, Kaiyu X Fu, J Justin Gooding, Jun Huang, Frédéric Kanoufi, John J Kasianowicz, Moonjoo Kim, Christine Kranz, Christian Kuttner, Fei Li, Liang Liu, Wei Liu, Jin Lu, Si-Min Lu, Kim McKelvey, Andrew R Mount, Hang Ren, Yuanhua Shao, Yasufumi Takahashi, Shuo Tan, Juan Tang, Haiyan Wang, Kang Wang, Liang Wang, Weihua Wang, Fan Xia, Tianyi Xiong, Yi-Lun Ying, Yueming Zhai, Ziwen Zhao, Yige Zhou","doi":"10.1039/d4fd90067g","DOIUrl":"https://doi.org/10.1039/d4fd90067g","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this paper is to overview the meeting on New horizons in nanoelectrochemistry held at Nanjing University in China in October 2024 and to give some perspective to the work presented. This paper is based on my summary talk and breaks down the subjects in the following areas of nanoelectrochemistry presented at the meeting: nanowires, nanonets, and nanoarrays; nanopores; nanopipettes; spectroelectrochemistry, scanning ion-conductance microscopy and light-active processes at nanointerfaces; scanning electrochemical microscopy and scanning electrochemical cell microscopy; and nanosensors. I end with some discussion of online meetings and where the field might go including artificial intelligence and by asking AI to define the challenges and future of nanoelectrochemistry.
{"title":"New horizons in nanoelectrochemistry: concluding remarks.","authors":"Andrew G Ewing","doi":"10.1039/d4fd00183d","DOIUrl":"10.1039/d4fd00183d","url":null,"abstract":"<p><p>The aim of this paper is to overview the meeting on New horizons in nanoelectrochemistry held at Nanjing University in China in October 2024 and to give some perspective to the work presented. This paper is based on my summary talk and breaks down the subjects in the following areas of nanoelectrochemistry presented at the meeting: nanowires, nanonets, and nanoarrays; nanopores; nanopipettes; spectroelectrochemistry, scanning ion-conductance microscopy and light-active processes at nanointerfaces; scanning electrochemical microscopy and scanning electrochemical cell microscopy; and nanosensors. I end with some discussion of online meetings and where the field might go including artificial intelligence and by asking AI to define the challenges and future of nanoelectrochemistry.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This introductory lecture prefaces the 2024 New Horizons in Nanoelectrochemistry Faraday Discussion. A broad view of the previous Discussions related to nanoelectrochemistry is taken. Big ideas or concepts discussed at these previous meetings are identified, along with specific examples in each area. Closing comments aimed at a high level and related to where we are today and what is needed to continue to drive nanoelectrochemistry towards the horizon are considered.
{"title":"Spiers Memorial Lecture: New horizons in nanoelectrochemistry.","authors":"Oluwasegun Wahab, Lane A Baker","doi":"10.1039/d4fd00159a","DOIUrl":"10.1039/d4fd00159a","url":null,"abstract":"<p><p>This introductory lecture prefaces the 2024 New Horizons in Nanoelectrochemistry <i>Faraday Discussion</i>. A broad view of the previous Discussions related to nanoelectrochemistry is taken. Big ideas or concepts discussed at these previous meetings are identified, along with specific examples in each area. Closing comments aimed at a high level and related to where we are today and what is needed to continue to drive nanoelectrochemistry towards the horizon are considered.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ion transport through biological channels is influenced not only by the structural properties of the channels themselves but also by the composition of the phospholipid membrane, which acts as a scaffold for these nanochannels. Drawing inspiration from how lipid membrane composition modulates ion currents, as seen in the activation of the K+ channel in Streptomyces A (KcsA) by anionic lipids, we propose a biomimetic nanochannel system that integrates DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By modifying the length of the multibranched DNA nanowires generated through the hybridization chain reactions (HCR) and varying the concentration of the linker strands that integrate these DNA nanowire structures with the GO membrane, the composition of the membrane can be effectively adjusted, consequently impacting ion transport. This method provides a strategy for developing devices with highly efficient and tunable ion transport, suitable for applications in mass transport, environmental protection, biomimetic channels, and biosensors.
离子通过生物通道的传输不仅受通道本身结构特性的影响,还受磷脂膜成分的影响,磷脂膜是这些纳米通道的支架。从阴离子脂质激活链霉菌 A 的 K+ 通道(KcsA)的过程中,我们从脂质膜成分如何调节离子电流中汲取了灵感,提出了一种将 DNA 纳米技术与二维氧化石墨烯(GO)纳米片相结合的仿生纳米通道系统。通过改变杂交链反应(HCR)产生的多分支 DNA 纳米线的长度,以及改变将这些 DNA 纳米线结构与 GO 膜结合在一起的连接链的浓度,可以有效调整膜的组成,从而影响离子传输。这种方法为开发具有高效和可调离子传输功能的设备提供了一种策略,适用于质量传输、环境保护、仿生通道和生物传感器等应用领域。
{"title":"Regulation of Transmembrane Current through Modulation of Biomimetic Lipid Membrane Composition","authors":"Zhiwei Shang, Jing Zhao, Mengyu Yang, Yuling Xiao, Wenjing Chu, Yilin Cai, Xiaoqing Yi, Meihua Lin, Fan Xia","doi":"10.1039/d4fd00149d","DOIUrl":"https://doi.org/10.1039/d4fd00149d","url":null,"abstract":"Ion transport through biological channels is influenced not only by the structural properties of the channels themselves but also by the composition of the phospholipid membrane, which acts as a scaffold for these nanochannels. Drawing inspiration from how lipid membrane composition modulates ion currents, as seen in the activation of the K+ channel in Streptomyces A (KcsA) by anionic lipids, we propose a biomimetic nanochannel system that integrates DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By modifying the length of the multibranched DNA nanowires generated through the hybridization chain reactions (HCR) and varying the concentration of the linker strands that integrate these DNA nanowire structures with the GO membrane, the composition of the membrane can be effectively adjusted, consequently impacting ion transport. This method provides a strategy for developing devices with highly efficient and tunable ion transport, suitable for applications in mass transport, environmental protection, biomimetic channels, and biosensors.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recent developments of scanning electrochemical probe techniques focus on the strategy of scanning electrolyte. For example, scanning electrochemical cell microscopy (SECCM) is based on holding the electrolyte in a glass capillary, while scanning gel electrochemical microscopy (SGECM) immobilizes the gel electrolyte on micro-disk electrodes or etched metal wires. In both SECCM and SGECM, the first and essential step is to approach the electrolyte probe to be in contact with the sample, which is very often achieved by current feedback with a constant applied potential between the probe and the sample. This work attempts to theoretically analyse the deformation of electrolyte during this approaching process. For liquid electrolyte in SECCM, surface tension is considered to counterbalance the gravity and electrostatic force in 2D cylindrical coordinates with axial symmetry. The deformation at equilibrium is solved under certain conditions. For gel electrolyte, a viscoelastic gel is analysed with simplified 1D geometry. Both equilibrium and dynamic approaching are considered. The results suggest that for both liquid and gel electrolytes, critical conditions exist for breaking the equilibrium. When applied potential is higher or the distance is lower than the threshold, the force will not equilibrate and the electrolyte will deform until contact. The critical condition depends on the properties (surface tension for liquid, elastic and viscous modulus for gel) and geometry (radius of capillary for liquid, thickness for gel) of electrolyte. Prospects of further extending the work closer to real experimental scenarios, especially SGECM, are also discussed.
{"title":"Charge induced deformation of scanning electrolyte before contact","authors":"Liang Liu","doi":"10.1039/d4fd00147h","DOIUrl":"https://doi.org/10.1039/d4fd00147h","url":null,"abstract":"The recent developments of scanning electrochemical probe techniques focus on the strategy of scanning electrolyte. For example, scanning electrochemical cell microscopy (SECCM) is based on holding the electrolyte in a glass capillary, while scanning gel electrochemical microscopy (SGECM) immobilizes the gel electrolyte on micro-disk electrodes or etched metal wires. In both SECCM and SGECM, the first and essential step is to approach the electrolyte probe to be in contact with the sample, which is very often achieved by current feedback with a constant applied potential between the probe and the sample. This work attempts to theoretically analyse the deformation of electrolyte during this approaching process. For liquid electrolyte in SECCM, surface tension is considered to counterbalance the gravity and electrostatic force in 2D cylindrical coordinates with axial symmetry. The deformation at equilibrium is solved under certain conditions. For gel electrolyte, a viscoelastic gel is analysed with simplified 1D geometry. Both equilibrium and dynamic approaching are considered. The results suggest that for both liquid and gel electrolytes, critical conditions exist for breaking the equilibrium. When applied potential is higher or the distance is lower than the threshold, the force will not equilibrate and the electrolyte will deform until contact. The critical condition depends on the properties (surface tension for liquid, elastic and viscous modulus for gel) and geometry (radius of capillary for liquid, thickness for gel) of electrolyte. Prospects of further extending the work closer to real experimental scenarios, especially SGECM, are also discussed.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"17 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grayson Huldin, Junming Huang, Julius Reitemeier, Kaiyu Fu
The transition to a personalized point-of-care model in medicine will fundamentally change the way medicine is practiced, leading to better patient care. Electrochemical biosensors based on structure-switching aptamers can contribute to this medical revolution due to the feasibility and convenience of selecting aptamers for specific targets. Recent studies have reported that nanostructured electrodes can enhance the signals of aptamer-based biosensors. However, miniaturized systems and body fluid environments pose challenges such as signal-to-noise ratio reduction and biofouling. To address these issues, researchers have proposed various electrode coating materials, including zwitterionic materials, biocompatible polymers, and hybrid membranes. Nafion, a commonly used ion exchange membrane, is known for its excellent permselectivity and anti-biofouling properties, making it a suitable choice for biosensor systems. However, the performance and mechanism of Nafion-coated aptamer-based biosensor systems have not been thoroughly studied. In this work, we present a Nafion-coated gold nanoporous electrode, which excludes Nafion from the nanoporous structures and allows the aptamers immobilized inside the nanopores to freely detect chosen targets. The nanopore electrode is formed by a sputtering and dealloying process, resulting in a pore size in tens of nanometers. The biosensor is optimized by adjusting the electrochemical measurement parameters, aptamer density, Nafion thickness, and nanopore size. Furthermore, we propose an explanation for the unusual signaling behavior of the aptamers confined within the nanoporous structures. This work provides a generalizable platform to investigate membrane-coated aptamer-based biosensors.
{"title":"Nafion Coated Nanopore Electrode for Improving Electrochemical Aptamer-Based Biosensing","authors":"Grayson Huldin, Junming Huang, Julius Reitemeier, Kaiyu Fu","doi":"10.1039/d4fd00144c","DOIUrl":"https://doi.org/10.1039/d4fd00144c","url":null,"abstract":"The transition to a personalized point-of-care model in medicine will fundamentally change the way medicine is practiced, leading to better patient care. Electrochemical biosensors based on structure-switching aptamers can contribute to this medical revolution due to the feasibility and convenience of selecting aptamers for specific targets. Recent studies have reported that nanostructured electrodes can enhance the signals of aptamer-based biosensors. However, miniaturized systems and body fluid environments pose challenges such as signal-to-noise ratio reduction and biofouling. To address these issues, researchers have proposed various electrode coating materials, including zwitterionic materials, biocompatible polymers, and hybrid membranes. Nafion, a commonly used ion exchange membrane, is known for its excellent permselectivity and anti-biofouling properties, making it a suitable choice for biosensor systems. However, the performance and mechanism of Nafion-coated aptamer-based biosensor systems have not been thoroughly studied. In this work, we present a Nafion-coated gold nanoporous electrode, which excludes Nafion from the nanoporous structures and allows the aptamers immobilized inside the nanopores to freely detect chosen targets. The nanopore electrode is formed by a sputtering and dealloying process, resulting in a pore size in tens of nanometers. The biosensor is optimized by adjusting the electrochemical measurement parameters, aptamer density, Nafion thickness, and nanopore size. Furthermore, we propose an explanation for the unusual signaling behavior of the aptamers confined within the nanoporous structures. This work provides a generalizable platform to investigate membrane-coated aptamer-based biosensors.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"1 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DaVante Cain, Ethan Cao, Ivan Vlassiouk, Tilman E Schäffer, Zuzanna Siwy
There has been a great amount of interest in nanopores as the basis for sensors and templates for preparation of biomimetic channels as well as model systems to understand transport properties at the nanoscale. The presence of surface charges on the pore walls has been shown to induce ion selectivity as well as enhance ionic conductance compared to uncharged pores. Here, using three-dimensional continuum modeling, we examine the role of length of charged nanopores as well as applied voltage for controlling ion selectivity and ionic conductance of single nanopores and small nanopore arrays. First, we present conditions where the ion current and ion selectivity of nanopores with homogeneous surface charges remain unchanged even if the pore length decreases by a factor of 6. This length-independent conductance is explained through the effect of ion concentration polarization (ICP) that modifies local ionic concentrations not only at the pore entrances but also in the pore in a voltage-dependent manner. We describe how voltage controls ion selectivity of nanopores with different lengths and present conditions when charged nanopores conduct less current than uncharged pores of the same geometrical characteristics. The manuscript provides different measures of the extent of the depletion zone induced by ICP in single pores and nanopore arrays including systems with ionic diodes. The modeling shown here will help design selective nanopores for a variety of applications where single nanopores and nanopore arrays are used.
{"title":"Ion Concentration Polarization Causes a Nearly Pore-Length-Independent Conductance of Nanopores","authors":"DaVante Cain, Ethan Cao, Ivan Vlassiouk, Tilman E Schäffer, Zuzanna Siwy","doi":"10.1039/d4fd00148f","DOIUrl":"https://doi.org/10.1039/d4fd00148f","url":null,"abstract":"There has been a great amount of interest in nanopores as the basis for sensors and templates for preparation of biomimetic channels as well as model systems to understand transport properties at the nanoscale. The presence of surface charges on the pore walls has been shown to induce ion selectivity as well as enhance ionic conductance compared to uncharged pores. Here, using three-dimensional continuum modeling, we examine the role of length of charged nanopores as well as applied voltage for controlling ion selectivity and ionic conductance of single nanopores and small nanopore arrays. First, we present conditions where the ion current and ion selectivity of nanopores with homogeneous surface charges remain unchanged even if the pore length decreases by a factor of 6. This length-independent conductance is explained through the effect of ion concentration polarization (ICP) that modifies local ionic concentrations not only at the pore entrances but also in the pore in a voltage-dependent manner. We describe how voltage controls ion selectivity of nanopores with different lengths and present conditions when charged nanopores conduct less current than uncharged pores of the same geometrical characteristics. The manuscript provides different measures of the extent of the depletion zone induced by ICP in single pores and nanopore arrays including systems with ionic diodes. The modeling shown here will help design selective nanopores for a variety of applications where single nanopores and nanopore arrays are used.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"8 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}