Reductive deoxygenation of alcohols is particularly challenging because of the high bond dissociation energy of the C-OH bond and the poor leaving ability of the hydroxyl group. Herein we describe a Ph3P═O-catalyzed reductive deoxygenation of benzyl alcohols with PhSiH3 under an air atmosphere within 30 min of reaction time. The use of catalytic loading of Ph3P═O enhances the practicality of this protocol.
4-Membered heterocycles have been increasingly exploited in medicinal chemistry and, as small polar motifs, often show important influence on activity and physicochemical properties. Thietane dioxides similarly offer potential in both agricultural and pharmaceutical applications but are notably understudied. Here we report a divergent approach to 3,3-disubstituted thietane dioxide derivatives by forming carbocations on the 4-membered ring with catalytic Lewis or Brønsted acids. Benzylic tertiary alcohols of the thietane dioxides are coupled directly with arenes, thiols, and alcohols.
An iPrMgCl-deprotonating Weinreb amide-type Horner-Wadsworth-Emmons (HWE) reaction was developed, and the effects of diverse reaction conditions, including the base, cation, solvent, and concentration, were investigated to broaden the substrate scope and achieve high (E)-selectivity. The Weinreb amide-type phosphonoenolate generated from iPrMgCl was found to be isolable, stable for at least over a half year, and applicable in the HWE reaction keeping high productivity and selectivity compared with the in situ generated phosphonoenolate. The results prompted us to perform an application study including successive elongation, synthesis of a biscyclopropane, and Weinreb ketone syntheses.
An efficient chiral phosphoric acid-catalyzed asymmetric aza Friedel-Crafts reaction of 3,4-dihydroisoquinolines and 1-naphthols is described. The reaction provides a general method for the synthesis of diverse chiral tetrahydroisoquinoline with 1-naphthol substituents at the C1-position in excellent yields and enantioselectivities. Based on the conducted mechanistic experiments, a plausible catalytic mechanism was proposed. Moreover, the practicability of the reaction is successfully demonstrated by its application on a gram scale.