首页 > 最新文献

Chemical Society Reviews最新文献

英文 中文
Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis
IF 46.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-18 DOI: 10.1039/d3cs01163a
Xiaofei Lu, Penghui Zhang, Hanqian Pan, Pengyuan Yin, Peixin Zhang, Lifeng Yang, Xian Suo, Xili Cui, Huabin Xing
Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure–property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.
{"title":"Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis","authors":"Xiaofei Lu, Penghui Zhang, Hanqian Pan, Pengyuan Yin, Peixin Zhang, Lifeng Yang, Xian Suo, Xili Cui, Huabin Xing","doi":"10.1039/d3cs01163a","DOIUrl":"https://doi.org/10.1039/d3cs01163a","url":null,"abstract":"Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure–property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"24 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface chemistry-engineered perovskite quantum dot photovoltaics
IF 46.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-18 DOI: 10.1039/d4cs01107d
Xuliang Zhang, Hehe Huang, Chenyu Zhao, Jianyu Yuan
The discovery and synthesis of colloidal quantum dots (QDs) was awarded the Nobel Prize in Chemistry in 2023. Recently, the development of bulk metal halide perovskite semiconductors has generated intense interest in their corresponding perovskite QDs. QDs, more broadly known as nanocrystals, constitute a new class of materials that differ from both molecular and bulk materials. They have rapidly advanced to the forefront of optoelectronic applications owing to their unique size-, composition-, surface- and process-dependent optoelectronic properties. More importantly, their ultrahigh surface-area-to-volume ratio enables various surface chemistry engineering strategies to tune and optimize their optoelectronic properties. Finally, three-dimensional confined QDs, offering nearly perfect photoluminescent quantum yield, slow hot-carrier cooling time, especially their colloidal synthesis and processing using industrially friendly solvents, have revolutionized the fields of electronics, photonics, and optoelectronics. Particularly, in emerging perovskite QD-based PVs, the advancement of surface chemistry has boosted the record power conversion efficiency (PCE) to 19.1% within a five-year period, surpassing all other colloidal QD photovoltaics (PVs). Given the rapid enhancement of device performances, perovskite QD PVs have attracted significant attention. Further study of semiconducting perovskite QDs will lead to advanced surface structures, a deeper understanding of halide perovskites, and enhanced PCE. In this review article, we comprehensively summarize and discuss the emerging perovskite QD PVs, providing insights into the impact of surface chemical design on their electronic coupling, dispersibility, stability and defect passivation. The limitations of current perovskite QDs mainly arise from their “soft” ionic nature and dynamic surface equilibrium, which lead to difficulties in the large-scale synthesis of monodispersed perovskite QDs and conductive inks for high-throughput printing techniques. We present that the development of surface chemistry is becoming a platform for further improving PCE, aiming to reach the 20% milestone. Additionally, we discuss integrating artificial intelligence to facilitate the mass-production of perovskite QDs for large-area, low-cost PV technology, which could help address significant energy challenges.
{"title":"Surface chemistry-engineered perovskite quantum dot photovoltaics","authors":"Xuliang Zhang, Hehe Huang, Chenyu Zhao, Jianyu Yuan","doi":"10.1039/d4cs01107d","DOIUrl":"https://doi.org/10.1039/d4cs01107d","url":null,"abstract":"The discovery and synthesis of colloidal quantum dots (QDs) was awarded the Nobel Prize in Chemistry in 2023. Recently, the development of bulk metal halide perovskite semiconductors has generated intense interest in their corresponding perovskite QDs. QDs, more broadly known as nanocrystals, constitute a new class of materials that differ from both molecular and bulk materials. They have rapidly advanced to the forefront of optoelectronic applications owing to their unique size-, composition-, surface- and process-dependent optoelectronic properties. More importantly, their ultrahigh surface-area-to-volume ratio enables various surface chemistry engineering strategies to tune and optimize their optoelectronic properties. Finally, three-dimensional confined QDs, offering nearly perfect photoluminescent quantum yield, slow hot-carrier cooling time, especially their colloidal synthesis and processing using industrially friendly solvents, have revolutionized the fields of electronics, photonics, and optoelectronics. Particularly, in emerging perovskite QD-based PVs, the advancement of surface chemistry has boosted the record power conversion efficiency (PCE) to 19.1% within a five-year period, surpassing all other colloidal QD photovoltaics (PVs). Given the rapid enhancement of device performances, perovskite QD PVs have attracted significant attention. Further study of semiconducting perovskite QDs will lead to advanced surface structures, a deeper understanding of halide perovskites, and enhanced PCE. In this review article, we comprehensively summarize and discuss the emerging perovskite QD PVs, providing insights into the impact of surface chemical design on their electronic coupling, dispersibility, stability and defect passivation. The limitations of current perovskite QDs mainly arise from their “soft” ionic nature and dynamic surface equilibrium, which lead to difficulties in the large-scale synthesis of monodispersed perovskite QDs and conductive inks for high-throughput printing techniques. We present that the development of surface chemistry is becoming a platform for further improving PCE, aiming to reach the 20% milestone. Additionally, we discuss integrating artificial intelligence to facilitate the mass-production of perovskite QDs for large-area, low-cost PV technology, which could help address significant energy challenges.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"11 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Unified approaches in transition metal catalyzed C(sp3)–H functionalization: recent advances and mechanistic aspects
IF 46.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-17 DOI: 10.1039/d5cs90015h
Jagrit Grover, Amal Tom Sebastian, Siddhartha Maiti, Alex C. Bissember, Debabrata Maiti
Correction for ‘Unified approaches in transition metal catalyzed C(sp3)–H functionalization: recent advances and mechanistic aspects’ by Jagrit Grover et al., Chem. Soc. Rev., 2025, https://doi.org/10.1039/d0cs00488j.
{"title":"Correction: Unified approaches in transition metal catalyzed C(sp3)–H functionalization: recent advances and mechanistic aspects","authors":"Jagrit Grover, Amal Tom Sebastian, Siddhartha Maiti, Alex C. Bissember, Debabrata Maiti","doi":"10.1039/d5cs90015h","DOIUrl":"https://doi.org/10.1039/d5cs90015h","url":null,"abstract":"Correction for ‘Unified approaches in transition metal catalyzed C(sp<small><sup>3</sup></small>)–H functionalization: recent advances and mechanistic aspects’ by Jagrit Grover <em>et al.</em>, <em>Chem. Soc. Rev.</em>, 2025, https://doi.org/10.1039/d0cs00488j.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"13 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the potential of metal–organic framework based composites as key players in bisphenol detection
IF 46.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-17 DOI: 10.1039/d4cs01117a
Sayali Atkare, Shweta Jagtap, Dattatray J. Late
The extensive usage of bisphenols in the production of plastics and other materials has raised concerns about their potential adverse effects on human and marine ecosystems. This comprehensive review paper aims to provide insights into the various types of bisphenols and their derivatives, as well as the multiple pathways through which human and marine life can be exposed to these compounds. Additionally, it highlights the growing importance of developing effective detection methods for bisphenols and their derivatives due to their potential health and environmental implications. The focus then shifts towards metal–organic frameworks (MOFs) as promising materials for the detection of bisphenols. We delve into the characteristic properties of MOFs and their potential and limitations in the detection of bisphenols and their derivatives. This paper also addresses the significance of pristine MOFs and explores the potential of MOF-based composites for achieving enhanced detection performance. Subsequently, various detection techniques utilizing MOFs and their composites are reviewed. In the final sections, the recent strategic developments and challenges in this field, offering a concise summary of the principal findings of this review, novel approaches, limitations of current methodologies, and emerging trends for future directions, are discussed. This comprehensive exploration of the subject matter not only illuminates the current state of research on the detection of bisphenols but also provides valuable insights into the opportunities and challenges in this evolving field. In conclusion, this review underscores the critical importance of advancing the detection of bisphenols and their derivatives, with MOFs and their composites emerging as promising candidates for more efficient and sensitive detection. The potential for their applications in diverse fields, coupled with ongoing research efforts, suggests a bright future for MOF-based bisphenol detection technologies.
{"title":"Exploring the potential of metal–organic framework based composites as key players in bisphenol detection","authors":"Sayali Atkare, Shweta Jagtap, Dattatray J. Late","doi":"10.1039/d4cs01117a","DOIUrl":"https://doi.org/10.1039/d4cs01117a","url":null,"abstract":"The extensive usage of bisphenols in the production of plastics and other materials has raised concerns about their potential adverse effects on human and marine ecosystems. This comprehensive review paper aims to provide insights into the various types of bisphenols and their derivatives, as well as the multiple pathways through which human and marine life can be exposed to these compounds. Additionally, it highlights the growing importance of developing effective detection methods for bisphenols and their derivatives due to their potential health and environmental implications. The focus then shifts towards metal–organic frameworks (MOFs) as promising materials for the detection of bisphenols. We delve into the characteristic properties of MOFs and their potential and limitations in the detection of bisphenols and their derivatives. This paper also addresses the significance of pristine MOFs and explores the potential of MOF-based composites for achieving enhanced detection performance. Subsequently, various detection techniques utilizing MOFs and their composites are reviewed. In the final sections, the recent strategic developments and challenges in this field, offering a concise summary of the principal findings of this review, novel approaches, limitations of current methodologies, and emerging trends for future directions, are discussed. This comprehensive exploration of the subject matter not only illuminates the current state of research on the detection of bisphenols but also provides valuable insights into the opportunities and challenges in this evolving field. In conclusion, this review underscores the critical importance of advancing the detection of bisphenols and their derivatives, with MOFs and their composites emerging as promising candidates for more efficient and sensitive detection. The potential for their applications in diverse fields, coupled with ongoing research efforts, suggests a bright future for MOF-based bisphenol detection technologies.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"64 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isoxazoles as efficient alkyne amination reagents in divergent heterocycle synthesis.
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-13 DOI: 10.1039/d4cs01329h
Xin-Qi Zhu, Zhi-Xu Meng, Bo Zhou, Ming-Yu Teng, Long-Wu Ye

During the past decades, the exploration of new alkyne amination reactions has attracted increasing attention due to the high efficiency in heterocycle synthesis. In addition to the well-established alkyne amination reagents (such as nitrogen ylides and azides), isoxazoles and their derivatives have been proven to be efficient amination reagents, especially the N,O-bifunctional reagents of alkynes, in the transition metal-catalyzed transformation of alkynes through metal carbene intermediates. Isoxazole derivatives have been extensively applied to the rapid synthesis of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles in atom-economic manner. In this review, we summarize the latest trends and developments of isoxazole-enabled alkyne amination reactions and their applications in divergent heterocycle synthesis, including amination of ynamides, amination of ynol ethers, amination of thioynol ethers, amination of electron-deficient alkynes, amination of unpolarized alkynes and asymmetric amination of alkynes. Finally, we list the current challenges and opportunities for potential breakthroughs in this field.

{"title":"Isoxazoles as efficient alkyne amination reagents in divergent heterocycle synthesis.","authors":"Xin-Qi Zhu, Zhi-Xu Meng, Bo Zhou, Ming-Yu Teng, Long-Wu Ye","doi":"10.1039/d4cs01329h","DOIUrl":"https://doi.org/10.1039/d4cs01329h","url":null,"abstract":"<p><p>During the past decades, the exploration of new alkyne amination reactions has attracted increasing attention due to the high efficiency in heterocycle synthesis. In addition to the well-established alkyne amination reagents (such as nitrogen ylides and azides), isoxazoles and their derivatives have been proven to be efficient amination reagents, especially the N,O-bifunctional reagents of alkynes, in the transition metal-catalyzed transformation of alkynes through metal carbene intermediates. Isoxazole derivatives have been extensively applied to the rapid synthesis of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles in atom-economic manner. In this review, we summarize the latest trends and developments of isoxazole-enabled alkyne amination reactions and their applications in divergent heterocycle synthesis, including amination of ynamides, amination of ynol ethers, amination of thioynol ethers, amination of electron-deficient alkynes, amination of unpolarized alkynes and asymmetric amination of alkynes. Finally, we list the current challenges and opportunities for potential breakthroughs in this field.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging.
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1039/d3cs00520h
Aiwen Yu, Xinyu He, Tianruo Shen, Xinyu Yu, Wuyu Mao, Weijie Chi, Xiaogang Liu, Haoxing Wu

Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.

{"title":"Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging.","authors":"Aiwen Yu, Xinyu He, Tianruo Shen, Xinyu Yu, Wuyu Mao, Weijie Chi, Xiaogang Liu, Haoxing Wu","doi":"10.1039/d3cs00520h","DOIUrl":"https://doi.org/10.1039/d3cs00520h","url":null,"abstract":"<p><p>Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural, modified and conjugated carbohydrates in nucleic acids.
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1039/d4cs00799a
Debashis Dhara, Laurence A Mulard, Marcel Hollenstein

Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.

{"title":"Natural, modified and conjugated carbohydrates in nucleic acids.","authors":"Debashis Dhara, Laurence A Mulard, Marcel Hollenstein","doi":"10.1039/d4cs00799a","DOIUrl":"https://doi.org/10.1039/d4cs00799a","url":null,"abstract":"<p><p>Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocatalytic cascade reactions for management of diseases.
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-12 DOI: 10.1039/d3cs00410d
Ya-Ping Xiao, Jiayingzi Wu, Peng-Hang Chen, Shan Lei, Jing Lin, Xin Zhou, Peng Huang

Biocatalytic cascade reactions, which evolve from the confinement of multiple enzymes within living cells, represent a promising strategy for disease management. Using tailor-made nanoplatforms, reactions induced by multiple enzymes and/or nanozymes can be precisely triggered at pathogenic sites. These promote further cascade reactions that generate therapeutic species prompting effective therapeutic outcomes with minimal side effects. Over the past few years, this approach has seen widespread applications in disease management. This review attempts to critically assess and summarize the recent advances in the use of biocatalytic cascade reactions for the management of diseases. Emphasis is placed on the design of cascade catalytic systems of high efficiency and selectivity and the implementation of specific cascade processes that respond to the endogenous substances produced in the pathological processes. The various types of biocatalytic cascade reactions are outlined according to the timeline of the catalytic steps through a series of reported examples. The challenges and outlook in the field are also discussed to encourage the further development of personalized treatments based on biocatalytic cascade reactions.

{"title":"Biocatalytic cascade reactions for management of diseases.","authors":"Ya-Ping Xiao, Jiayingzi Wu, Peng-Hang Chen, Shan Lei, Jing Lin, Xin Zhou, Peng Huang","doi":"10.1039/d3cs00410d","DOIUrl":"https://doi.org/10.1039/d3cs00410d","url":null,"abstract":"<p><p>Biocatalytic cascade reactions, which evolve from the confinement of multiple enzymes within living cells, represent a promising strategy for disease management. Using tailor-made nanoplatforms, reactions induced by multiple enzymes and/or nanozymes can be precisely triggered at pathogenic sites. These promote further cascade reactions that generate therapeutic species prompting effective therapeutic outcomes with minimal side effects. Over the past few years, this approach has seen widespread applications in disease management. This review attempts to critically assess and summarize the recent advances in the use of biocatalytic cascade reactions for the management of diseases. Emphasis is placed on the design of cascade catalytic systems of high efficiency and selectivity and the implementation of specific cascade processes that respond to the endogenous substances produced in the pathological processes. The various types of biocatalytic cascade reactions are outlined according to the timeline of the catalytic steps through a series of reported examples. The challenges and outlook in the field are also discussed to encourage the further development of personalized treatments based on biocatalytic cascade reactions.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of hydrophobic catalysts for reducing the CO2 emission during the conversion of syngas into chemicals and fuels.
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1039/d4cs00731j
Yanfei Xu, Mingyue Ding

Syngas conversion is a key process for the production of chemicals and fuels from non-petroleum resources, such as biomass, coal, and natural gas. Water produced during syngas conversion can not only boost the production of CO2 by-products via inducing the water-gas shift side reaction, but also inhibit the conversion of CO by occupying the active sites on the catalyst, leading to high CO2 emission and low carbon utilization efficiency. Reducing CO2 emission during syngas conversion is a main development direction of the energy chemical industry toward the goal of carbon neutrality. It has been reported that hydrophobic modification can reduce a surface's affinity to water molecules, and many breakthroughs in the development of hydrophobic catalysts for weakening the negative effect of water on syngas conversion have been made recently. A rapidly growing number of studies have demonstrated the versatility of hydrophobic catalysts. In this review, we systematically summarize and discuss the development of hydrophobic catalysts in syngas chemistry since the 2000s. These hydrophobic catalysts can be divided into three categories, i.e., catalysts with hydrophobic surfaces, catalysts with hydrophobic supports, and catalysts physically mixed with hydrophobic promoters. Different categories of hydrophobic catalysts play different roles in syngas conversion. The perspectives and challenges for the future design of hydrophobic catalysts are also discussed.

{"title":"Development of hydrophobic catalysts for reducing the CO<sub>2</sub> emission during the conversion of syngas into chemicals and fuels.","authors":"Yanfei Xu, Mingyue Ding","doi":"10.1039/d4cs00731j","DOIUrl":"https://doi.org/10.1039/d4cs00731j","url":null,"abstract":"<p><p>Syngas conversion is a key process for the production of chemicals and fuels from non-petroleum resources, such as biomass, coal, and natural gas. Water produced during syngas conversion can not only boost the production of CO<sub>2</sub> by-products <i>via</i> inducing the water-gas shift side reaction, but also inhibit the conversion of CO by occupying the active sites on the catalyst, leading to high CO<sub>2</sub> emission and low carbon utilization efficiency. Reducing CO<sub>2</sub> emission during syngas conversion is a main development direction of the energy chemical industry toward the goal of carbon neutrality. It has been reported that hydrophobic modification can reduce a surface's affinity to water molecules, and many breakthroughs in the development of hydrophobic catalysts for weakening the negative effect of water on syngas conversion have been made recently. A rapidly growing number of studies have demonstrated the versatility of hydrophobic catalysts. In this review, we systematically summarize and discuss the development of hydrophobic catalysts in syngas chemistry since the 2000s. These hydrophobic catalysts can be divided into three categories, <i>i.e.</i>, catalysts with hydrophobic surfaces, catalysts with hydrophobic supports, and catalysts physically mixed with hydrophobic promoters. Different categories of hydrophobic catalysts play different roles in syngas conversion. The perspectives and challenges for the future design of hydrophobic catalysts are also discussed.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional crystalline porous framework materials based on supramolecular macrocycles.
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1039/d3cs00939d
Yitao Wu, Meiqi Tang, Michael L Barsoum, Zhijie Chen, Feihe Huang

Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, etc. Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (i.e., MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.

{"title":"Functional crystalline porous framework materials based on supramolecular macrocycles.","authors":"Yitao Wu, Meiqi Tang, Michael L Barsoum, Zhijie Chen, Feihe Huang","doi":"10.1039/d3cs00939d","DOIUrl":"https://doi.org/10.1039/d3cs00939d","url":null,"abstract":"<p><p>Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, <i>etc.</i> Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (<i>i.e.</i>, MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Society Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1