Synthesis of interlocked supramolecular cages has been a growing field of interest due to their structural diversity. Herein, we report the template-free synthesis of a Ru(II) triply interlocked [2] catenane using coordination-driven self-assembly. The self-assembly of a triazine-based tripyridyl donor L (2,4,6-tris(5-(pyridin-4-yl)thiophen-3-yl)-1,3,5-triazine) with a dinuclear Ru(II) acceptor M (Ru2(dhnq)(η6-p-cymene)2)(CF3SO3)2) yielded two distinct structures depending on the solvent and concentration. In methanol, a triply interlocked metalla [2] catenane (MC2) was formed, whereas in nitromethane, a non-interlocked cage (MC1) was obtained. The non-interlocked cage MC1 was gradually converted to MC2 in nitromethane by the increase in the concentration of cage MC1 from 0.5 to 9 mM. The interlocked cage (MC2) was stable after formation and was unaffected by the change in concentration. Notably, the free cage (MC1) exhibited host-guest interactions with polycyclic aromatic aldehydes, stabilizing the non-interlocked structure even at higher concentrations. In contrast, the triply interlocked [2] catenane (MC2) remains stable due to self-penetration and does not encapsulate guest molecules. This work showcases the stimuli-induced irreversible structural transformation of a triangular prismatic cage to its triply interlocked [2] catenane by employing metal-ligand coordination chemistry.
Benefiting from highly tunable pore environments, some metal-organic frameworks (MOFs) have recently shown promising prospects in the separation of methanol-to-olefin (MTO) products (mainly C3H6 and C2H4). However, the "trade-off" between gas storage capacity and selectivity always results in inefficient separation. In addition, poor stability of MOFs also limits practical separation applications. Herein, we have successfully assembled a layered Y-MOF (FJI-W9) with bent diisophthalate ligands (H4L), Y-O chains, and 2-fluorobenzoic acids. As expected, FJI-W9 not only exhibits good chemical stability but also shows significant potential for C3H6/C2H4 separation. For FJI-W9, the C3H6 uptake at 298 K and 10 kPa is 63 cm3/g, and the IAST selectivity of FJI-W9 for C3H6/C2H4 (V/V = 50/50) is calculated to be 20.5. To the best of our knowledge, both C3H6 uptake and selectivity of FJI-W9 surpass most porous materials. GCMC simulation indicates that the special supramolecular binding sites in FJI-W9 have much stronger interactions with C3H6 than C2H4 molecules. More importantly, practical breakthrough experiments demonstrate that FJI-W9 can effectively separate C3H6/C2H4 (50/50) mixtures, thus obtaining high-purity C2H4 and C3H6, respectively.
Since the first synthesis of graphdiyne (GDY), it has been widely receiving a lot of attention and has great application prospects in many fields, such as energy storage, catalysis, and sensing. However, the complex deprotection treatment and long reaction time limit its mass production and applications. Here, we present a strategy for the silver-catalyzed deprotection-free rapid synthesis of GDY. Crystalline GDY was synthesized in 8 h at room temperature and atmospheric pressure, and after the reaction, Ag nanoparticles with an ultrathin diameter of 2-3 nm were formed in situ inside and on the surface of GDY. This Ag/GDY composite exhibits a high specific surface area of 672.3 m2 g-1 and strong surface plasmon resonance behavior, showing a strong surface-enhanced Raman scattering effect. The enhancement factor and the lowest detection limit for rhodamine 6G are 3.54 × 108 and 1 × 10-14 M, respectively. The Ag/GDY achieves the simultaneous enrichment and detection of polychlorophenols and ultrafine nanoplastics.