首页 > 最新文献

ACS Chemical Neuroscience最新文献

英文 中文
Effect of a SARS-CoV-2 Protein Fragment on the Amyloidogenic Propensity of Human Islet Amyloid Polypeptide. SARS-CoV-2 蛋白片段对人胰岛淀粉样多肽致淀粉样倾向的影响
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-24 DOI: 10.1021/acschemneuro.4c00473
Marvin Bilog, Jennifer Cersosimo, Iliana Vigil, Ruel Z B Desamero, Adam A Profit

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the onset of COVID-19 have been linked to an increased risk of developing type 2 diabetes. While a variety of mechanisms may ultimately be responsible for the onset of type 2 diabetes under these circumstances, one mechanism that has been postulated involves the increased aggregation of human islet amyloid polypeptide (hIAPP) through direct interaction with SARS-CoV-2 viral proteins. Previous computational studies investigating this possibility revealed that a nine-residue peptide fragment known as SK9 (SFYVYSRVK) from the SARS-CoV-2 envelope protein can stabilize the native conformation of hIAPP1-37 by interacting with the N-terminal region of amylin. One of the areas particularly stabilized through this interaction encompasses residues 15-28 of amylin. Given these findings, we investigated whether SK9 could interact with short amyloidogenic sequences derived from this region of amylin. Here, we employ docking studies, molecular dynamics simulations, and biophysical techniques to provide theoretical as well as direct experimental evidence that SK9 can interact with hIAPP12-18 and hIAPP20-29 peptides. Furthermore, we demonstrate that SK9 not only can interact with these sequences but also serves to prevent the self-assembly of these amyloidogenic peptides. In striking contrast, we also show that SK9 has little effect on the amyloidogenic propensity of full-length amylin. These findings are contrary to previous published simulations involving SK9 and hIAPP1-37. Such observations may assist in clarifying potential mechanisms of the SARS-CoV-2 interaction with hIAPP and its relevance to the onset of type 2 diabetes in the setting of COVID-19.

感染严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)和 COVID-19 的发病与罹患 2 型糖尿病的风险增加有关。在这种情况下,2 型糖尿病的发病最终可能是由多种机制造成的,其中一种机制被认为是人胰岛淀粉样多肽(hIAPP)通过与 SARS-CoV-2 病毒蛋白的直接相互作用而增加了聚集。以前对这种可能性进行的计算研究显示,SARS-CoV-2 包膜蛋白中的一个名为 SK9 (SFYVYSRVK)的九残基肽片段可以通过与淀粉蛋白的 N 端区域相互作用来稳定 hIAPP1-37 的原生构象。通过这种相互作用特别稳定的区域之一包括淀粉蛋白的 15-28 残基。鉴于这些发现,我们研究了 SK9 是否能与来自淀粉蛋白这一区域的短淀粉样蛋白生成序列相互作用。在这里,我们利用对接研究、分子动力学模拟和生物物理技术,提供了 SK9 能与 hIAPP12-18 和 hIAPP20-29 肽相互作用的理论和直接实验证据。此外,我们还证明 SK9 不仅能与这些序列相互作用,还能阻止这些淀粉样蛋白生成肽的自组装。与此形成鲜明对比的是,我们还发现 SK9 对全长淀粉样蛋白的淀粉样化倾向几乎没有影响。这些发现与之前发表的涉及 SK9 和 hIAPP1-37 的模拟结果相反。这些观察结果可能有助于澄清 SARS-CoV-2 与 hIAPP 相互作用的潜在机制及其与 COVID-19 环境下 2 型糖尿病发病的相关性。
{"title":"Effect of a SARS-CoV-2 Protein Fragment on the Amyloidogenic Propensity of Human Islet Amyloid Polypeptide.","authors":"Marvin Bilog, Jennifer Cersosimo, Iliana Vigil, Ruel Z B Desamero, Adam A Profit","doi":"10.1021/acschemneuro.4c00473","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00473","url":null,"abstract":"<p><p>Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the onset of COVID-19 have been linked to an increased risk of developing type 2 diabetes. While a variety of mechanisms may ultimately be responsible for the onset of type 2 diabetes under these circumstances, one mechanism that has been postulated involves the increased aggregation of human islet amyloid polypeptide (hIAPP) through direct interaction with SARS-CoV-2 viral proteins. Previous computational studies investigating this possibility revealed that a nine-residue peptide fragment known as SK9 (SFYVYSRVK) from the SARS-CoV-2 envelope protein can stabilize the native conformation of hIAPP<sub>1-37</sub> by interacting with the N-terminal region of amylin. One of the areas particularly stabilized through this interaction encompasses residues 15-28 of amylin. Given these findings, we investigated whether SK9 could interact with short amyloidogenic sequences derived from this region of amylin. Here, we employ docking studies, molecular dynamics simulations, and biophysical techniques to provide theoretical as well as direct experimental evidence that SK9 can interact with hIAPP<sub>12-18</sub> and hIAPP<sub>20-29</sub> peptides. Furthermore, we demonstrate that SK9 not only can interact with these sequences but also serves to prevent the self-assembly of these amyloidogenic peptides. In striking contrast, we also show that SK9 has little effect on the amyloidogenic propensity of full-length amylin. These findings are contrary to previous published simulations involving SK9 and hIAPP<sub>1-37</sub>. Such observations may assist in clarifying potential mechanisms of the SARS-CoV-2 interaction with hIAPP and its relevance to the onset of type 2 diabetes in the setting of COVID-19.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the Neuroprotective Effect of Total Glycosides of Cistanche deserticola and Investigation of Novel Brain-Targeting Natural MAO-B Inhibitors. 肉苁蓉总苷的神经保护作用评估及新型脑靶向天然 MAO-B 抑制剂的研究
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-23 DOI: 10.1021/acschemneuro.4c00608
Xinyuan Zhai, Wenyu Xie, Muhammad Danish Yaqoob, Feng Zhao, Hong Zhe Zhu, Shang Shen Yang, Kai Wang, Xumei Wang, Hai Chao Wang, Xiaoming Wang

In this study, we investigated the role of total glycosides of Cistanche deserticola (TC) in MPTP-induced neuronal injury. Further, we screened potential inhibitory components of monoamine oxidase B (MAO-B). The study results indicate that TC may improve movement disorders and apoptosis of dopamine (DA) neurons by inhibiting MAO-B activity while reducing the number of glial cells, adjusting the metabolism level of monoamine neurotransmitters, and lowering inflammation and oxidative stress levels. Subsequently, a rapid screening method for drug-containing brain tissue was further constructed, and five candidate components that can cross the blood-brain barrier and bind to MAO-B were screened and submitted for biological activity evaluation and inhibition mechanism research. In summary, we discovered 2'-acetylacteoside as a promising and reversible mixed natural MAO-B inhibitor in TC and developed a rapid screening method for screening central nervous system drugs with blood-brain barrier permeability characteristics, providing potential candidates and an effective screening strategy for neurodegenerative diseases.

在这项研究中,我们研究了肉苁蓉总苷(TC)在 MPTP 诱导的神经元损伤中的作用。此外,我们还筛选了单胺氧化酶 B(MAO-B)的潜在抑制成分。研究结果表明,TC可通过抑制MAO-B的活性来改善运动障碍和多巴胺(DA)神经元的凋亡,同时减少神经胶质细胞的数量,调整单胺神经递质的代谢水平,降低炎症和氧化应激水平。随后,我们进一步构建了含药脑组织的快速筛选方法,筛选出了5种能透过血脑屏障与MAO-B结合的候选成分,并提交进行生物活性评价和抑制机制研究。综上所述,我们在TC中发现了2'-乙酰乳糖苷是一种很有前景的可逆性混合天然MAO-B抑制剂,并建立了一种快速筛选方法,用于筛选具有血脑屏障通透性特征的中枢神经系统药物,为神经退行性疾病的治疗提供了潜在的候选药物和有效的筛选策略。
{"title":"Evaluation of the Neuroprotective Effect of Total Glycosides of <i>Cistanche deserticola</i> and Investigation of Novel Brain-Targeting Natural MAO-B Inhibitors.","authors":"Xinyuan Zhai, Wenyu Xie, Muhammad Danish Yaqoob, Feng Zhao, Hong Zhe Zhu, Shang Shen Yang, Kai Wang, Xumei Wang, Hai Chao Wang, Xiaoming Wang","doi":"10.1021/acschemneuro.4c00608","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00608","url":null,"abstract":"<p><p>In this study, we investigated the role of total glycosides of <i>Cistanche deserticola</i> (TC) in MPTP-induced neuronal injury. Further, we screened potential inhibitory components of monoamine oxidase B (MAO-B). The study results indicate that TC may improve movement disorders and apoptosis of dopamine (DA) neurons by inhibiting MAO-B activity while reducing the number of glial cells, adjusting the metabolism level of monoamine neurotransmitters, and lowering inflammation and oxidative stress levels. Subsequently, a rapid screening method for drug-containing brain tissue was further constructed, and five candidate components that can cross the blood-brain barrier and bind to MAO-B were screened and submitted for biological activity evaluation and inhibition mechanism research. In summary, we discovered 2'-acetylacteoside as a promising and reversible mixed natural MAO-B inhibitor in TC and developed a rapid screening method for screening central nervous system drugs with blood-brain barrier permeability characteristics, providing potential candidates and an effective screening strategy for neurodegenerative diseases.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stereospecific Properties and Intracellular Transport of Novel Intrinsically Fluorescent Neurosteroids
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-22 DOI: 10.1021/acschemneuro.4c0057110.1021/acschemneuro.4c00571
Vibeke Akkerman, Peter Reinholdt, Rasmus Schnoor-Madsen, Line Lauritsen, Jad Bader, Minxing Qian, Yuanjiang Xu, Gustav Akk, Holger A. Scheidt, Peter Müller, Douglas F. Covey, Alex S. Evers*, Jacob Kongsted* and Daniel Wüstner*, 

Allopregnanolone (AlloP) is an example of neuroactive steroids (NAS), which is a potent allosteric activator of the γ-aminobutyric acid A (GABAA) receptor. The mechanisms underlying the biological activity of AlloP and other NAS are only partially understood. Here, we present intrinsically fluorescent analogs of AlloP (MQ-323) and its 3β-epimer, epi-allopregnanolone (E-AlloP) (YX-11), and show, by a combination of spectroscopic and computational studies, that these analogs mimic the membrane properties of AlloP and E-AlloP very well. We found stereospecific differences in the orientation and dynamics of the NAS as well as in their impact on membrane permeability. However, all NAS are unable to condense the lipid bilayer, in stark contrast to cholesterol. Using Förster resonance energy transfer (FRET) and electrophysiological measurements, we show that MQ-323 but not YX-11 binds at the intersubunit site of the ELICα1GABAA receptor and potentiates GABA-induced receptor currents. In aqueous solvents, YX-11 forms aggregates at much lower concentrations than MQ-323, and loading both analogs onto cyclodextrin allows for their uptake by human astrocytes, where they become enriched in lipid droplets (LDs), as shown by quantitative fluorescence microscopy. Trafficking of the NAS analogs is stereospecific, as uptake and lipid droplet targeting is more pronounced for YX-11 compared to MQ-323. In summary, we present novel minimally modified analogs of AlloP and E-AlloP, which enable us to reveal stereospecific membrane properties, allosteric receptor activation, and intracellular transport of these neurosteroids. Our fluorescence design strategy will be very useful for the analysis of other NAS in the future.

{"title":"Stereospecific Properties and Intracellular Transport of Novel Intrinsically Fluorescent Neurosteroids","authors":"Vibeke Akkerman,&nbsp;Peter Reinholdt,&nbsp;Rasmus Schnoor-Madsen,&nbsp;Line Lauritsen,&nbsp;Jad Bader,&nbsp;Minxing Qian,&nbsp;Yuanjiang Xu,&nbsp;Gustav Akk,&nbsp;Holger A. Scheidt,&nbsp;Peter Müller,&nbsp;Douglas F. Covey,&nbsp;Alex S. Evers*,&nbsp;Jacob Kongsted* and Daniel Wüstner*,&nbsp;","doi":"10.1021/acschemneuro.4c0057110.1021/acschemneuro.4c00571","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00571https://doi.org/10.1021/acschemneuro.4c00571","url":null,"abstract":"<p >Allopregnanolone (AlloP) is an example of neuroactive steroids (NAS), which is a potent allosteric activator of the γ-aminobutyric acid A (GABA<sub><i>A</i></sub>) receptor. The mechanisms underlying the biological activity of AlloP and other NAS are only partially understood. Here, we present intrinsically fluorescent analogs of AlloP (MQ-323) and its 3β-epimer, epi-allopregnanolone (E-AlloP) (YX-11), and show, by a combination of spectroscopic and computational studies, that these analogs mimic the membrane properties of AlloP and E-AlloP very well. We found stereospecific differences in the orientation and dynamics of the NAS as well as in their impact on membrane permeability. However, all NAS are unable to condense the lipid bilayer, in stark contrast to cholesterol. Using Förster resonance energy transfer (FRET) and electrophysiological measurements, we show that MQ-323 but not YX-11 binds at the intersubunit site of the ELICα<sub>1</sub>GABA<sub><i>A</i></sub> receptor and potentiates GABA-induced receptor currents. In aqueous solvents, YX-11 forms aggregates at much lower concentrations than MQ-323, and loading both analogs onto cyclodextrin allows for their uptake by human astrocytes, where they become enriched in lipid droplets (LDs), as shown by quantitative fluorescence microscopy. Trafficking of the NAS analogs is stereospecific, as uptake and lipid droplet targeting is more pronounced for YX-11 compared to MQ-323. In summary, we present novel minimally modified analogs of AlloP and E-AlloP, which enable us to reveal stereospecific membrane properties, allosteric receptor activation, and intracellular transport of these neurosteroids. Our fluorescence design strategy will be very useful for the analysis of other NAS in the future.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 23","pages":"4322–4336 4322–4336"},"PeriodicalIF":4.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Damage of the Phospholipid Bilayer by Aβ42 at Physiologically Relevant Peptide Concentrations. 生理相关多肽浓度下 Aβ42 对磷脂双分子层的损伤
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-22 DOI: 10.1021/acschemneuro.4c00647
Ruan van Deventer, Yuri L Lyubchenko

Amyloid β (Aβ) aggregates are implicated in the pathology of several neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, and damage to membranes is considered one of the pathology-related effects of Aβ. Experiments in vitro indicate that Aβ can damage these membranes; however, such experiments were performed at Aβ concentrations in the micromolar range, several orders above the physiologically relevant conditions. Our studies with Aβ42 in the low nanomolar concentrations did not reveal any damage to the supported lipid bilayer, questioning this membrane damage mechanism of Aβ. However, the phospholipid composition can be a factor contributing to the interaction of Aβ with the membrane. Therefore, in this study, we investigated the interaction of 50 nM Aβ42 with supported lipid bilayers composed of equimolar ratios of POPS and POPC at phospholipid concentrations of 0.1 and 0.25 mg/mL. Using atomic force microscopy (AFM), we observed that Aβ42 induced damage to bilayers at 0.1 mg/mL, characterized by forming defects that grew in size and number over time. The defects penetrate only the upper leaflet of the bilayer, but no such defects were observed at 0.25 mg/mL phospholipid concentrations. We additionally determined Young's modulus of these bilayers as a measure of stiffness, and these values were 6.9 ± 3.6 MPa and 16.6 ± 5.3 MPa for the 0.1 mg/mL and the 0.25 mg/mL bilayers, respectively. These findings suggest that Aβ42's ability to induce bilayer damage depends on membrane stiffness, with softer bilayers (0.1 mg/mL) being more susceptible to Aβ42-induced damage. The results are discussed and compared with models in which Aβ42 oligomers create localized membrane damage. The implication of the results to the mechanisms of the Aβ42 oligomer pathology is discussed.

淀粉样蛋白 β(Aβ)聚集体与阿尔茨海默病、亨廷顿氏病和帕金森氏病等多种神经退行性疾病的病理有关,对细胞膜的损伤被认为是 Aβ 的病理相关效应之一。体外实验表明,Aβ 能损伤这些膜;然而,这些实验是在微摩尔范围的 Aβ 浓度下进行的,比生理相关条件高出几个数量级。我们对纳摩尔浓度较低的 Aβ42 进行的研究没有发现对支撑脂质双分子层有任何损伤,这对 Aβ 的膜损伤机制提出了质疑。然而,磷脂成分可能是导致 Aβ 与膜相互作用的一个因素。因此,在本研究中,我们研究了 50 nM Aβ42 与由等摩尔比的 POPS 和 POPC 组成的支撑脂质双分子层在磷脂浓度为 0.1 和 0.25 mg/mL 时的相互作用。利用原子力显微镜(AFM),我们观察到 Aβ42 在 0.1 毫克/毫升的浓度下会对双层膜造成损伤,其特征是形成缺陷,且缺陷的大小和数量会随着时间的推移而增加。这些缺陷只穿透双分子层的上部小叶,但在磷脂浓度为 0.25 毫克/毫升时没有观察到此类缺陷。我们还测定了这些双分子层的杨氏模量,以衡量其硬度,结果显示 0.1 毫克/毫升和 0.25 毫克/毫升双分子层的杨氏模量分别为 6.9 ± 3.6 兆帕和 16.6 ± 5.3 兆帕。这些发现表明,Aβ42 诱导双分子层损伤的能力取决于膜的硬度,较软的双分子层(0.1 毫克/毫升)更容易受到 Aβ42 诱导的损伤。本文讨论了这些结果,并将其与 Aβ42 寡聚体造成局部膜损伤的模型进行了比较。讨论了这些结果对 Aβ42 寡聚体病理机制的影响。
{"title":"Damage of the Phospholipid Bilayer by Aβ42 at Physiologically Relevant Peptide Concentrations.","authors":"Ruan van Deventer, Yuri L Lyubchenko","doi":"10.1021/acschemneuro.4c00647","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00647","url":null,"abstract":"<p><p>Amyloid β (Aβ) aggregates are implicated in the pathology of several neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, and damage to membranes is considered one of the pathology-related effects of Aβ. Experiments in vitro indicate that Aβ can damage these membranes; however, such experiments were performed at Aβ concentrations in the micromolar range, several orders above the physiologically relevant conditions. Our studies with Aβ42 in the low nanomolar concentrations did not reveal any damage to the supported lipid bilayer, questioning this membrane damage mechanism of Aβ. However, the phospholipid composition can be a factor contributing to the interaction of Aβ with the membrane. Therefore, in this study, we investigated the interaction of 50 nM Aβ42 with supported lipid bilayers composed of equimolar ratios of POPS and POPC at phospholipid concentrations of 0.1 and 0.25 mg/mL. Using atomic force microscopy (AFM), we observed that Aβ42 induced damage to bilayers at 0.1 mg/mL, characterized by forming defects that grew in size and number over time. The defects penetrate only the upper leaflet of the bilayer, but no such defects were observed at 0.25 mg/mL phospholipid concentrations. We additionally determined Young's modulus of these bilayers as a measure of stiffness, and these values were 6.9 ± 3.6 MPa and 16.6 ± 5.3 MPa for the 0.1 mg/mL and the 0.25 mg/mL bilayers, respectively. These findings suggest that Aβ42's ability to induce bilayer damage depends on membrane stiffness, with softer bilayers (0.1 mg/mL) being more susceptible to Aβ42-induced damage. The results are discussed and compared with models in which Aβ42 oligomers create localized membrane damage. The implication of the results to the mechanisms of the Aβ42 oligomer pathology is discussed.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-DOPA Promotes Functional Proliferation Through GPR143, Specific L-DOPA Receptor of Astrocytes. L-DOPA 通过星形胶质细胞的特异性 L-DOPA 受体 GPR143 促进功能性增殖
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-07 DOI: 10.1021/acschemneuro.4c00311
Ye-Ji Kim, Gyeong Min Park, Woo Kyung Cho, Dong Ho Woo

l-3,4-Dihydroxyphenylalanine (levodopa and L-DOPA in this text), alongside dopamine, boasts high biocompatibility, prompting industrial demand for its use as a coating material. Indeed, the effectiveness of L-DOPA is steadily rising as it serves as an oral therapeutic agent for neurodegenerative brain diseases, particularly Parkinson's disease (PD). However, the effects of L-DOPA on the growth and function of astrocytes, the main glial cells, and the most numerous glial cells in the brain, are unknown. Here, we investigated whether L-DOPA is possible as a coating material on cover glass and polystyrene for rat primary astrocytes. The coating state of L-DOPA on the cover glass and polystyrene was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). Interestingly, L-DOPA coated on the cover glass promoted the proliferation of astrocytes but not neurons. Furthermore, L-DOPA coated on the cover glass, as opposed to polystyrene, facilitated the proliferation of the astrocytes. The astrocytes grown on L-DOPA-coated cover glasses exhibited functional receptor-activated Ca2+ transients through the activation of protease-activated receptor subtype 1 (PAR-1), recognized as an astrocytic functional marker. However, cover glass coated with 0, 500, 1000, 2000, and 4000 μg/mL L-DOPA maintained astrocyte viability, while supplementation with 500 and 1000 μM L-DOPA significantly decreased astrocyte viability. This suggests that treatments with free 500 and 1000 μM L-DOPA significantly reduced the number of astrocytes. Both Pimozide, an inhibitor of G protein-coupled receptor 143 (GPR143), also known as Ocular albinism type 1 (OA1), and CCG2046, an inhibitor of regulator of G protein signaling 4 (RGS4), reduced the viability of astrocytes on cover glass coated with L-DOPA compared to astrocytes on cover glass coated with poly-d-lysine (PDL). This suggests that L-DOPA promotes astrocyte proliferation through activation of the GPR143 signaling pathway. These findings imply that L-DOPA proliferates functional astrocytes through the activation of GPR143. These results are the first report that L-DOPA coating cover glass proliferates rat primary astrocytes with the activation of GPR143. The discovery that levodopa enhances cell adhesion can significantly influence research in multiple ways. It provides insights into cell behavior, disease mechanisms, and potential therapeutic applications in tissue engineering and regenerative medicine. Additionally, it offers opportunities to explore novel approaches for improving cell-based therapies and tissue regeneration. Overall, this finding opens up new avenues for research, with broad implications across various scientific fields.

l-3,4-二羟基苯丙氨酸(本文中为左旋多巴和 L-DOPA)与多巴胺一样,具有很高的生物相容性,因此工业界需要将其用作涂层材料。事实上,左旋多巴作为一种口服治疗剂,可用于治疗脑神经退行性疾病,尤其是帕金森病(PD),其疗效正在稳步上升。然而,L-DOPA 对星形胶质细胞(大脑中主要的胶质细胞和数量最多的胶质细胞)的生长和功能的影响尚不清楚。在此,我们研究了 L-DOPA 是否可以作为大鼠原代星形胶质细胞在盖玻片和聚苯乙烯上的涂层材料。我们通过 X 射线光电子能谱(XPS)和静态水接触角(WCA)对 L-DOPA 在盖板玻璃和聚苯乙烯上的涂覆状态进行了表征。有趣的是,涂布在盖板玻璃上的 L-DOPA 促进了星形胶质细胞的增殖,但并没有促进神经元的增殖。此外,与聚苯乙烯相比,涂在盖玻片上的 L-DOPA 能促进星形胶质细胞的增殖。在涂有 L-DOPA 的盖玻片上生长的星形胶质细胞通过激活蛋白酶活化受体亚型 1(PAR-1)表现出功能性受体活化 Ca2+ 瞬态,而 PAR-1 是公认的星形胶质细胞功能标记。然而,涂有 0、500、1000、2000 和 4000 μg/mL L-DOPA 的盖玻片能维持星形胶质细胞的活力,而补充 500 和 1000 μM L-DOPA 则会显著降低星形胶质细胞的活力。这表明,游离 500 和 1000 μM L-DOPA 能显著减少星形胶质细胞的数量。与涂有聚二赖氨酸(PDL)的盖玻片上的星形胶质细胞相比,涂有 L-DOPA 的盖玻片上的星形胶质细胞的活力降低了。这表明 L-DOPA 通过激活 GPR143 信号通路促进星形胶质细胞增殖。这些发现意味着 L-DOPA 可通过激活 GPR143 使功能性星形胶质细胞增殖。这些结果首次报道了左旋多巴涂覆盖玻片可通过激活 GPR143 使大鼠原发性星形胶质细胞增殖。左旋多巴能增强细胞粘附性这一发现能在多个方面对研究产生重大影响。它为细胞行为、疾病机制以及组织工程和再生医学中的潜在治疗应用提供了见解。此外,它还为探索改进细胞疗法和组织再生的新方法提供了机会。总之,这一发现开辟了新的研究途径,对各个科学领域都有广泛的影响。
{"title":"L-DOPA Promotes Functional Proliferation Through GPR143, Specific L-DOPA Receptor of Astrocytes.","authors":"Ye-Ji Kim, Gyeong Min Park, Woo Kyung Cho, Dong Ho Woo","doi":"10.1021/acschemneuro.4c00311","DOIUrl":"10.1021/acschemneuro.4c00311","url":null,"abstract":"<p><p>l-3,4-Dihydroxyphenylalanine (levodopa and L-DOPA in this text), alongside dopamine, boasts high biocompatibility, prompting industrial demand for its use as a coating material. Indeed, the effectiveness of L-DOPA is steadily rising as it serves as an oral therapeutic agent for neurodegenerative brain diseases, particularly Parkinson's disease (PD). However, the effects of L-DOPA on the growth and function of astrocytes, the main glial cells, and the most numerous glial cells in the brain, are unknown. Here, we investigated whether L-DOPA is possible as a coating material on cover glass and polystyrene for rat primary astrocytes. The coating state of L-DOPA on the cover glass and polystyrene was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). Interestingly, L-DOPA coated on the cover glass promoted the proliferation of astrocytes but not neurons. Furthermore, L-DOPA coated on the cover glass, as opposed to polystyrene, facilitated the proliferation of the astrocytes. The astrocytes grown on L-DOPA-coated cover glasses exhibited functional receptor-activated Ca<sup>2+</sup> transients through the activation of protease-activated receptor subtype 1 (PAR-1), recognized as an astrocytic functional marker. However, cover glass coated with 0, 500, 1000, 2000, and 4000 μg/mL L-DOPA maintained astrocyte viability, while supplementation with 500 and 1000 μM L-DOPA significantly decreased astrocyte viability. This suggests that treatments with free 500 and 1000 μM L-DOPA significantly reduced the number of astrocytes. Both Pimozide, an inhibitor of G protein-coupled receptor 143 (GPR143), also known as Ocular albinism type 1 (OA1), and CCG2046, an inhibitor of regulator of G protein signaling 4 (RGS4), reduced the viability of astrocytes on cover glass coated with L-DOPA compared to astrocytes on cover glass coated with poly-d-lysine (PDL). This suggests that L-DOPA promotes astrocyte proliferation through activation of the GPR143 signaling pathway. These findings imply that L-DOPA proliferates functional astrocytes through the activation of GPR143. These results are the first report that L-DOPA coating cover glass proliferates rat primary astrocytes with the activation of GPR143. The discovery that levodopa enhances cell adhesion can significantly influence research in multiple ways. It provides insights into cell behavior, disease mechanisms, and potential therapeutic applications in tissue engineering and regenerative medicine. Additionally, it offers opportunities to explore novel approaches for improving cell-based therapies and tissue regeneration. Overall, this finding opens up new avenues for research, with broad implications across various scientific fields.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4132-4142"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoxetine Ameliorates Cognitive Deficits in High-Fat Diet Mice by Regulating BDNF Expression. 氟西汀通过调节BDNF的表达改善高脂饮食小鼠的认知缺陷
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-10-30 DOI: 10.1021/acschemneuro.4c00540
Xiang Zuo, ZiKun Zhu, MengYu Liu, Qili Zhao, XinYu Li, Xin Zhao, XiZeng Feng

High-fat diet (HFD) induced obesity is associated with depression-related behavioral and neurogenic changes and may lead to cognitive impairment. Fluoxetine (FXT), the most commonly used antidepressant, may alleviate depressive symptoms by increasing neurogenesis, but the potential efficacy of FXT for HFD-induced cognitive deficits is unclear. In this study, we established an obese HFD mouse model by feeding three-week-old male C57BL/6N mice with a chronic HFD for 18 weeks, then assessed adipose tissue morphology by magnetic resonance imaging and histopathology, assessed cognitive function by Morris water maze and novel object recognition tests, and detected DCX+ and BrdU+ expression in the hippocampal dentate gyrus (DG) region by immunofluorescence bioassay. Western blot detected brain-derived neurotrophic factor (BDNF) levels and CREB-BDNF pathway-related genes were assayed by Quantitative RT-PCR. The results of the study showed that HFD contributes to obesity and cognitive deficits, and more importantly, it also reduces BDNF expression and neurogenesis levels in the hippocampus. Subsequently, we found that treatment with FXT (10 mg/kg/day) ameliorated chronic HFD-induced cognitive deficits and increased the expression of Nestin, BrdU+, and DCX+ in the DG, restored BDNF expression in the hippocampus and increased the expression of genes related to CREB, BDNF, NGF, and MAPK1. In conclusion, our data elucidated that FXT ameliorates cognitive deficits and reduces chronic HFD-induced neurogenesis by restoring BDNF expression and CREB-BDNF signaling, this provides a good basis and scientific significance for future research on the clinical treatment of obesity.

高脂饮食(HFD)引起的肥胖与抑郁相关的行为和神经源性变化有关,并可能导致认知障碍。氟西汀(FXT)是最常用的抗抑郁药,可通过增加神经发生缓解抑郁症状,但 FXT 对高脂饮食诱导的认知障碍的潜在疗效尚不清楚。在这项研究中,我们通过给三周大的雄性C57BL/6N小鼠喂食慢性高密度脂蛋白胆固醇18周,建立了肥胖高密度脂蛋白胆固醇小鼠模型,然后通过磁共振成像和组织病理学评估了脂肪组织形态,通过莫里斯水迷宫和新物体识别测试评估了认知功能,并通过免疫荧光生物测定检测了海马齿状回(DG)区域的DCX+和BrdU+表达。Western blot检测了脑源性神经营养因子(BDNF)水平,定量RT-PCR检测了CREB-BDNF通路相关基因。研究结果表明,高密度脂蛋白胆固醇(HFD)会导致肥胖和认知障碍,更重要的是,它还会降低海马中 BDNF 的表达和神经发生水平。随后,我们发现 FXT(10 毫克/千克/天)能改善慢性 HFD 引起的认知障碍,并增加 DG 中 Nestin、BrdU+ 和 DCX+ 的表达,恢复海马中 BDNF 的表达,增加 CREB、BDNF、NGF 和 MAPK1 相关基因的表达。总之,我们的研究数据阐明了FXT通过恢复BDNF表达和CREB-BDNF信号转导,改善认知障碍,减少慢性HFD诱导的神经发生,这为今后肥胖症的临床治疗研究提供了良好的基础和科学意义。
{"title":"Fluoxetine Ameliorates Cognitive Deficits in High-Fat Diet Mice by Regulating BDNF Expression.","authors":"Xiang Zuo, ZiKun Zhu, MengYu Liu, Qili Zhao, XinYu Li, Xin Zhao, XiZeng Feng","doi":"10.1021/acschemneuro.4c00540","DOIUrl":"10.1021/acschemneuro.4c00540","url":null,"abstract":"<p><p>High-fat diet (HFD) induced obesity is associated with depression-related behavioral and neurogenic changes and may lead to cognitive impairment. Fluoxetine (FXT), the most commonly used antidepressant, may alleviate depressive symptoms by increasing neurogenesis, but the potential efficacy of FXT for HFD-induced cognitive deficits is unclear. In this study, we established an obese HFD mouse model by feeding three-week-old male C57BL/6N mice with a chronic HFD for 18 weeks, then assessed adipose tissue morphology by magnetic resonance imaging and histopathology, assessed cognitive function by Morris water maze and novel object recognition tests, and detected DCX<sup>+</sup> and BrdU<sup>+</sup> expression in the hippocampal dentate gyrus (DG) region by immunofluorescence bioassay. Western blot detected brain-derived neurotrophic factor (BDNF) levels and <i>CREB-BDNF</i> pathway-related genes were assayed by Quantitative RT-PCR. The results of the study showed that HFD contributes to obesity and cognitive deficits, and more importantly, it also reduces BDNF expression and neurogenesis levels in the hippocampus. Subsequently, we found that treatment with FXT (10 mg/kg/day) ameliorated chronic HFD-induced cognitive deficits and increased the expression of Nestin, BrdU<sup>+</sup>, and DCX<sup>+</sup> in the DG, restored BDNF expression in the hippocampus and increased the expression of genes related to <i>CREB</i>, <i>BDNF</i>, <i>NGF</i>, and <i>MAPK1</i>. In conclusion, our data elucidated that FXT ameliorates cognitive deficits and reduces chronic HFD-induced neurogenesis by restoring BDNF expression and <i>CREB-BDNF</i> signaling, this provides a good basis and scientific significance for future research on the clinical treatment of obesity.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4229-4240"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescence Detection and Inhibition Mechanisms of DNTPH on Aβ42 Oligomers Characterized as Products in the Four Stages of Aggregation. 荧光检测和 DNTPH 对 Aβ42 寡聚体的抑制机制,Aβ42 寡聚体被表征为聚合四个阶段的产物。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-04 DOI: 10.1021/acschemneuro.4c00509
Mengke Jia, Ye Li, Chuanbo Wang, Xvzhi Gao, Yvning Guan, Hongqi Ai

Aβ42 aggregation was implicated in the pathogenesis of Alzheimer's disease (AD) without effective treatment available currently. Future efforts in clinical trials should instead focus on applying those antiamyloid treatment strategies to the preclinical stage and "the earlier, the better". How to identify and inhibit Aβ42 oligomers in the different stages of aggregation is therefore becoming the key to controlling primary aggregation and consequent AD development. Aggregation-induced emission probe DNTPH was demonstrated recently, enabling detection of amyloid at wavelengths up to 710 nm and exhibiting strong inhibitory effects on Aβ fibrosis at low dose. However, the detection and inhibition mechanisms of Aβ oligomers at various early stages of aggregation remain unknown. To this end, we built four different morphologies of Aβ42 pentamers characterized by products in monomeric aggregate (PM), primary nucleation (PP), secondary nucleation (PS), and fibril stages (PF) to explore the distinguishable ability and inhibition mechanisms of DNTPH with different concentrations upon binding. The results showcased that DNTPH does detect the four different Aβ42 oligomers with conspicuous fluorescence (λPM = 657 nm, λPP = 639 nm, λPS = 630 nm, and λPF = 648 nm) but fails to distinguish them, indicating that additional improvements are required further for the probe to achieve it. The inhibition mechanisms of DNTPH on the four Aβ42 aggregation are however of amazing differences. For PM and PP, aggregation was inhibited by altering the secondary structural composition, i.e., by decreasing the β-sheet and toxic turn (residues 22-23) probabilities, respectively. For PS, inhibition was achieved by segregating and keeping the two disordered monomeric species (PSM) away from the ordered secondary seed species (PSF) and consequently blocking further growth of the PSF seed. The inhibition mechanism for PS is first probed and proposed so far, as far as we know, and the corresponding aggregation stage of PS is the most important one among the four stages. The inhibition of PF was triggered by distorting the fibril chains, disrupting the ordered fibril surface for the contact of monomers. In addition, the optimal inhibitory concentrations of DNTPH for PM, PP, and PF were determined to be 1:3, while for PS, it was 1:5. This outcome offers a novel perspective for designing drugs targeting Aβ42 oligomers at different aggregation stages.

Aβ42 聚集与阿尔茨海默病(AD)的发病机制有关,但目前尚无有效的治疗方法。今后的临床试验工作应侧重于将这些抗淀粉样蛋白治疗策略应用于临床前阶段,而且 "越早越好"。因此,如何识别和抑制处于不同聚集阶段的 Aβ42 寡聚体正成为控制原发性聚集和由此引发的注意力缺失症发展的关键。最近证明了聚集诱导发射探针 DNTPH,它能在波长达 710 纳米的波长下检测淀粉样蛋白,并在低剂量下对 Aβ 纤维化有很强的抑制作用。然而,Aβ寡聚体在不同早期聚集阶段的检测和抑制机制仍然未知。为此,我们构建了以单体聚集(PM)、初级成核(PP)、次级成核(PS)和纤维阶段(PF)产物为特征的四种不同形态的Aβ42五聚体,以探索不同浓度的DNTPH结合后的区分能力和抑制机制。结果表明,DNTPH确实能以明显的荧光(λPM = 657 nm、λPP = 639 nm、λPS = 630 nm和λPF = 648 nm)探测到四种不同的Aβ42寡聚体,但却无法区分它们,这表明该探针还需要进一步改进才能实现。然而,DNTPH 对四种 Aβ42 聚集的抑制机制却有着惊人的差异。对于 PM 和 PP,抑制聚集的方法是改变二级结构组成,即分别降低 β 片层和毒性转折(残基 22-23)的概率。对 PS 而言,抑制是通过将两个无序的单体物种(PSM)与有序的次级种子物种(PSF)分离并保持距离,从而阻止 PSF 种子的进一步生长来实现的。据我们所知,这是迄今为止首次探究并提出 PS 的抑制机制,而 PS 的相应聚集阶段是四个阶段中最重要的一个。PF 的抑制是通过扭曲纤维链、破坏单体接触的有序纤维表面而触发的。此外,还确定了 DNTPH 对 PM、PP 和 PF 的最佳抑制浓度为 1:3,而对 PS 的最佳抑制浓度为 1:5。这一结果为设计针对不同聚集阶段的 Aβ42 寡聚体的药物提供了新的视角。
{"title":"Fluorescence Detection and Inhibition Mechanisms of DNTPH on Aβ42 Oligomers Characterized as Products in the Four Stages of Aggregation.","authors":"Mengke Jia, Ye Li, Chuanbo Wang, Xvzhi Gao, Yvning Guan, Hongqi Ai","doi":"10.1021/acschemneuro.4c00509","DOIUrl":"10.1021/acschemneuro.4c00509","url":null,"abstract":"<p><p>Aβ42 aggregation was implicated in the pathogenesis of Alzheimer's disease (AD) without effective treatment available currently. Future efforts in clinical trials should instead focus on applying those antiamyloid treatment strategies to the preclinical stage and \"the earlier, the better\". How to identify and inhibit Aβ42 oligomers in the different stages of aggregation is therefore becoming the key to controlling primary aggregation and consequent AD development. Aggregation-induced emission probe DNTPH was demonstrated recently, enabling detection of amyloid at wavelengths up to 710 nm and exhibiting strong inhibitory effects on Aβ fibrosis at low dose. However, the detection and inhibition mechanisms of Aβ oligomers at various early stages of aggregation remain unknown. To this end, we built four different morphologies of Aβ42 pentamers characterized by products in monomeric aggregate (P<sub>M</sub>), primary nucleation (P<sub>P</sub>), secondary nucleation (P<sub>S</sub>), and fibril stages (P<sub>F</sub>) to explore the distinguishable ability and inhibition mechanisms of DNTPH with different concentrations upon binding. The results showcased that DNTPH does detect the four different Aβ42 oligomers with conspicuous fluorescence (λ<sub>P<sub>M</sub></sub> = 657 nm, λ<sub>P<sub>P</sub></sub> = 639 nm, λ<sub>P<sub>S</sub></sub> = 630 nm, and λ<sub>P<sub>F</sub></sub> = 648 nm) but fails to distinguish them, indicating that additional improvements are required further for the probe to achieve it. The inhibition mechanisms of DNTPH on the four Aβ42 aggregation are however of amazing differences. For P<sub>M</sub> and P<sub>P</sub>, aggregation was inhibited by altering the secondary structural composition, i.e., by decreasing the β-sheet and toxic turn (residues 22-23) probabilities, respectively. For P<sub>S</sub>, inhibition was achieved by segregating and keeping the two disordered monomeric species (P<sub>SM</sub>) away from the ordered secondary seed species (P<sub>SF</sub>) and consequently blocking further growth of the P<sub>SF</sub> seed. The inhibition mechanism for P<sub>S</sub> is first probed and proposed so far, as far as we know, and the corresponding aggregation stage of P<sub>S</sub> is the most important one among the four stages. The inhibition of P<sub>F</sub> was triggered by distorting the fibril chains, disrupting the ordered fibril surface for the contact of monomers. In addition, the optimal inhibitory concentrations of DNTPH for P<sub>M</sub>, P<sub>P</sub>, and P<sub>F</sub> were determined to be 1:3, while for P<sub>S</sub>, it was 1:5. This outcome offers a novel perspective for designing drugs targeting Aβ42 oligomers at different aggregation stages.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4220-4228"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA-Mediated Formation of Phase-Separated Coacervates of the Nucleic Acid-Binding Domain of TAR DNA-Binding Protein (TDP-43) Prevents Its Amyloid-Like Misfolding. DNA 介导的 TAR DNA 结合蛋白(TDP-43)核酸结合域相分离凝聚体的形成可防止其淀粉样错误折叠。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-10-29 DOI: 10.1021/acschemneuro.4c00117
Divya Patni, Anjali D Patil, Mona S Kirmire, Anjali Jha, Santosh Kumar Jha

Sequestration of protein molecules and nucleic acids to stress granules is one of the most promising strategies that cells employ to protect themselves from stress. In vitro, studies suggest that the nucleic acid-binding domain of TDP-43 (TDP-43tRRM) undergoes amyloid-like aggregation to β-sheet-rich structures in low pH stress. In contrast, we observed that the TDP-43tRRM undergoes complex coacervation in the presence of ssDNA to a dense and light phase, preventing its amyloid-like aggregation. The soluble light phase consists of monomeric native-like TDP-43tRRM. The microscopic data suggest that the dense phase consists of spherical coacervates with limited internal dynamics. We performed multiparametric analysis by employing various biophysical techniques and found that complex coacervation depends on the concentration and ratio of the participating biomolecules and is driven by multivalent interactions. The modulation of these forces due to environmental conditions or disease mutations regulates the extent of coacervation, and the weakening of interactions between TDP-43tRRM and ssDNA leads to amyloid-like aggregation of TDP-43tRRM. Our results highlight a competition among the native state, amyloid-like aggregates, and complex coacervates tuned by various environmental factors. Together, our results illuminate an alternate function of TDP-43tRRM in response to pH stress in the presence of the ssDNA.

将蛋白质分子和核酸封闭在应激颗粒中是细胞保护自身免受应激的最有前途的策略之一。体外研究表明,TDP-43的核酸结合域(TDP-43tRRM)在低pH值应激状态下会发生淀粉样聚集,形成富含β片状结构。与此相反,我们观察到 TDP-43tRRM 在 ssDNA 存在的情况下会发生复杂的共凝,形成浓相和淡相,从而阻止其淀粉样聚集。可溶的轻相由单体类原生 TDP-43tRRM 组成。显微镜数据表明,致密相由内部动力学有限的球形凝聚物组成。我们利用各种生物物理技术进行了多参数分析,发现复合凝聚取决于参与的生物大分子的浓度和比例,并由多价相互作用驱动。环境条件或疾病突变对这些作用力的调控调节了共保持的程度,TDP-43tRRM 和 ssDNA 之间相互作用的减弱导致了 TDP-43tRRM 的淀粉样聚集。我们的研究结果突显了原生状态、淀粉样聚集体和由各种环境因素调节的复杂共凝胶之间的竞争。总之,我们的研究结果揭示了 TDP-43tRRM 在 ssDNA 存在的情况下应对 pH 压力的另一种功能。
{"title":"DNA-Mediated Formation of Phase-Separated Coacervates of the Nucleic Acid-Binding Domain of TAR DNA-Binding Protein (TDP-43) Prevents Its Amyloid-Like Misfolding.","authors":"Divya Patni, Anjali D Patil, Mona S Kirmire, Anjali Jha, Santosh Kumar Jha","doi":"10.1021/acschemneuro.4c00117","DOIUrl":"10.1021/acschemneuro.4c00117","url":null,"abstract":"<p><p>Sequestration of protein molecules and nucleic acids to stress granules is one of the most promising strategies that cells employ to protect themselves from stress. In vitro, studies suggest that the nucleic acid-binding domain of TDP-43 (TDP-43<sup>tRRM</sup>) undergoes amyloid-like aggregation to β-sheet-rich structures in low pH stress. In contrast, we observed that the TDP-43<sup>tRRM</sup> undergoes complex coacervation in the presence of ssDNA to a dense and light phase, preventing its amyloid-like aggregation. The soluble light phase consists of monomeric native-like TDP-43<sup>tRRM</sup>. The microscopic data suggest that the dense phase consists of spherical coacervates with limited internal dynamics. We performed multiparametric analysis by employing various biophysical techniques and found that complex coacervation depends on the concentration and ratio of the participating biomolecules and is driven by multivalent interactions. The modulation of these forces due to environmental conditions or disease mutations regulates the extent of coacervation, and the weakening of interactions between TDP-43<sup>tRRM</sup> and ssDNA leads to amyloid-like aggregation of TDP-43<sup>tRRM</sup>. Our results highlight a competition among the native state, amyloid-like aggregates, and complex coacervates tuned by various environmental factors. Together, our results illuminate an alternate function of TDP-43<sup>tRRM</sup> in response to pH stress in the presence of the ssDNA.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4105-4122"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Design, Synthesis, and Evaluation of Rofecoxib-Based Photosensitizers for the NIR Imaging and Photo-Oxidization of Aβ Aggregates. 基于罗非昔布的光敏剂的合理设计、合成和评估,用于 Aβ 聚集体的近红外成像和光氧化。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-04 DOI: 10.1021/acschemneuro.4c00496
Gulziba Anwar, Yingmei Cao, Wen-Jing Shi, Li Niu, Jin-Wu Yan

The photo-oxidation of amyloid-β (Aβ) protein catalyzed by Aβ-targeting photosensitizers shows high potential in treating Alzheimer's disease (AD). Herein, we report the first example of photosensitizers based on the rofecoxib scaffold, in which rational introduction of the electron-absorbing pyridinium/quinolinium moiety to the skeleton of rofecoxib could not only extend the absorption and emission wavelengths but also increase the efficiency of singlet oxygen (1O2) production. The emission wavelengths of R-S-MP, R-S-MC, and R-S-MQ are red-shifted to 860 nm, which might benefit the NIR imaging of Aβ aggregates with low photoscattering and autofluorescence. In addition, R-S-MP can identify Aβ plaques in brain sections of AD mice and detect abnormal viscosity environments, facilitating the pathological study of Alzheimer's disease. Most importantly, upon complexation with Aβ plaques, R-S-MP and R-S-MC could produce high singlet oxygen (1O2) under light irradiation, which can achieve the specific photo-oxidation of Aβ protein. Our optimized photosensitizers could change the conformation of β-rich Aβ protein and enhance its clearance through the lysosomal pathway, leading to the reduction of the Aβ-mediated neurotoxicity. All these excellent characteristics of our dual-functional photosensitizers for simultaneous imaging and photo-oxidation of Aβ aggregates suggest their promising prospects in pathological research in AD.

由 Aβ 靶向光敏剂催化的淀粉样蛋白-β(Aβ)的光氧化反应在治疗阿尔茨海默病(AD)方面显示出巨大的潜力。在本文中,我们首次报道了基于罗非昔布支架的光敏剂,在罗非昔布的骨架上合理引入吸电子的吡啶/喹啉分子,不仅能延长吸收和发射波长,还能提高单线态氧(1O2)的生成效率。R-S-MP、R-S-MC 和 R-S-MQ 的发射波长红移至 860 nm,这可能有利于对光散射和自发荧光较低的 Aβ 聚集体进行近红外成像。此外,R-S-MP 还能识别阿兹海默症小鼠脑切片中的 Aβ 斑块,并检测异常粘度环境,有助于对阿兹海默症进行病理研究。最重要的是,R-S-MP 和 R-S-MC 与 Aβ 斑块络合后,在光照射下能产生大量单线态氧(1O2),从而实现对 Aβ 蛋白的特异性光氧化。我们优化的光敏剂能改变富含β的Aβ蛋白的构象,提高其通过溶酶体途径的清除率,从而降低Aβ介导的神经毒性。我们的双功能光敏剂可同时对 Aβ 聚集体进行成像和光氧化,其所有这些优异特性都表明它们在注意力缺失症的病理研究中具有广阔的前景。
{"title":"Rational Design, Synthesis, and Evaluation of Rofecoxib-Based Photosensitizers for the NIR Imaging and Photo-Oxidization of Aβ Aggregates.","authors":"Gulziba Anwar, Yingmei Cao, Wen-Jing Shi, Li Niu, Jin-Wu Yan","doi":"10.1021/acschemneuro.4c00496","DOIUrl":"10.1021/acschemneuro.4c00496","url":null,"abstract":"<p><p>The photo-oxidation of amyloid-β (Aβ) protein catalyzed by Aβ-targeting photosensitizers shows high potential in treating Alzheimer's disease (AD). Herein, we report the first example of photosensitizers based on the rofecoxib scaffold, in which rational introduction of the electron-absorbing pyridinium/quinolinium moiety to the skeleton of rofecoxib could not only extend the absorption and emission wavelengths but also increase the efficiency of singlet oxygen (<sup>1</sup>O<sub>2</sub>) production. The emission wavelengths of <b>R-S-MP</b>, <b>R-S-MC</b>, and <b>R-S-MQ</b> are red-shifted to 860 nm, which might benefit the NIR imaging of Aβ aggregates with low photoscattering and autofluorescence. In addition, <b>R-S-MP</b> can identify Aβ plaques in brain sections of AD mice and detect abnormal viscosity environments, facilitating the pathological study of Alzheimer's disease. Most importantly, upon complexation with Aβ plaques, <b>R-S-MP</b> and <b>R-S-MC</b> could produce high singlet oxygen (<sup>1</sup>O<sub>2</sub>) under light irradiation, which can achieve the specific photo-oxidation of Aβ protein. Our optimized photosensitizers could change the conformation of β-rich Aβ protein and enhance its clearance through the lysosomal pathway, leading to the reduction of the Aβ-mediated neurotoxicity. All these excellent characteristics of our dual-functional photosensitizers for simultaneous imaging and photo-oxidation of Aβ aggregates suggest their promising prospects in pathological research in AD.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4202-4209"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-Enabled Ultra-large Virtual Screening Identifies Potential Inhibitors of Choline Acetyltransferase for Theranostic Purposes. 人工智能超大规模虚拟筛选确定了用于治疗的潜在胆碱乙酰转移酶抑制剂。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-10-31 DOI: 10.1021/acschemneuro.4c00361
Anurag T K Baidya, Abhinav Kumar Goswami, Bhanuranjan Das, Taher Darreh-Shori, Rajnish Kumar

Alzheimer's disease (AD) and related dementias are among the primary neurological disorders and call for the urgent need for early-stage diagnosis to gain an upper edge in therapeutic intervention and increase the overall success rate. Choline acetyltransferase (ChAT) is the key acetylcholine (ACh) biosynthesizing enzyme and a legitimate target for the development of biomarkers for early-stage diagnosis and monitoring of therapeutic responses. It is also a theranostic target for tackling colon and lung cancers, where overexpression of non-neuronal ChAT leads to the production of acetylcholine, which acts as an autocrine growth factor for cancer cells. Theranostics is a hybrid of diagnostics and therapeutics that can be used to locate cancer cells using radiotracers and kill them without affecting other healthy tissues. Traditional virtual screening protocols have a lot of limitations; given the current rate of chemical database expansion exceeding billions, much faster screening protocols are required. Deep docking (DD) is one such platform that leverages the power of deep neural network (DNN)-based virtual screening, empowering researchers to dock billions of molecules in a speedy, yet explicit manner. Here, we have screened 1.3 billion compounds library from the ZINC20 database, identifying the best-performing hits. With each iteration run where the first iteration gave ∼116 million hits, the second iteration gave ∼3.7 million hits, and the final third iteration gave 168,447 hits from which further refinement gave us the top 5 compounds as potential ChAT inhibitors. The discovery of novel ChAT inhibitors will enable researchers to develop new probes that can be used as novel theranostic agents against cancer and as early-stage diagnostics for the onset of AD, for timely therapeutic intervention to halt the further progression of AD.

阿尔茨海默病(AD)和相关痴呆症是主要的神经系统疾病之一,迫切需要早期诊断,以便在治疗干预中占据优势并提高总体成功率。胆碱乙酰转移酶(ChAT)是乙酰胆碱(ACh)生物合成的关键酶,也是开发用于早期诊断和监测治疗反应的生物标记物的合法靶点。它也是治疗结肠癌和肺癌的靶点,因为非神经元 ChAT 的过度表达会导致乙酰胆碱的产生,而乙酰胆碱是癌细胞的自分泌生长因子。Theranostics 是诊断和治疗的混合体,可用于使用放射性示踪剂定位癌细胞,并在不影响其他健康组织的情况下杀死它们。传统的虚拟筛选方案有很多局限性;鉴于目前化学数据库的扩展速度已超过数十亿,因此需要更快的筛选方案。深度对接(DD)就是这样一个平台,它利用基于深度神经网络(DNN)的虚拟筛选功能,使研究人员能够以快速而明确的方式对接数十亿分子。在这里,我们对 ZINC20 数据库中的 13 亿个化合物库进行了筛选,找出了表现最好的化合物。每次迭代运行,第一次迭代有 1.16 亿次命中,第二次迭代有 370 万次命中,最后第三次迭代有 168,447 次命中,经过进一步细化,我们从中选出了前 5 个化合物作为潜在的 ChAT 抑制剂。新型 ChAT 抑制剂的发现将使研究人员能够开发出新的探针,这些探针可用作抗癌的新型治疗剂,也可用作注意力缺失症发病的早期诊断,以便及时进行治疗干预,阻止注意力缺失症的进一步发展。
{"title":"AI-Enabled Ultra-large Virtual Screening Identifies Potential Inhibitors of Choline Acetyltransferase for Theranostic Purposes.","authors":"Anurag T K Baidya, Abhinav Kumar Goswami, Bhanuranjan Das, Taher Darreh-Shori, Rajnish Kumar","doi":"10.1021/acschemneuro.4c00361","DOIUrl":"10.1021/acschemneuro.4c00361","url":null,"abstract":"<p><p>Alzheimer's disease (AD) and related dementias are among the primary neurological disorders and call for the urgent need for early-stage diagnosis to gain an upper edge in therapeutic intervention and increase the overall success rate. Choline acetyltransferase (ChAT) is the key acetylcholine (ACh) biosynthesizing enzyme and a legitimate target for the development of biomarkers for early-stage diagnosis and monitoring of therapeutic responses. It is also a theranostic target for tackling colon and lung cancers, where overexpression of non-neuronal ChAT leads to the production of acetylcholine, which acts as an autocrine growth factor for cancer cells. Theranostics is a hybrid of diagnostics and therapeutics that can be used to locate cancer cells using radiotracers and kill them without affecting other healthy tissues. Traditional virtual screening protocols have a lot of limitations; given the current rate of chemical database expansion exceeding billions, much faster screening protocols are required. Deep docking (DD) is one such platform that leverages the power of deep neural network (DNN)-based virtual screening, empowering researchers to dock billions of molecules in a speedy, yet explicit manner. Here, we have screened 1.3 billion compounds library from the ZINC20 database, identifying the best-performing hits. With each iteration run where the first iteration gave ∼116 million hits, the second iteration gave ∼3.7 million hits, and the final third iteration gave 168,447 hits from which further refinement gave us the top 5 compounds as potential ChAT inhibitors. The discovery of novel ChAT inhibitors will enable researchers to develop new probes that can be used as novel theranostic agents against cancer and as early-stage diagnostics for the onset of AD, for timely therapeutic intervention to halt the further progression of AD.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4156-4170"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Chemical Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1